Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Colonization by Klebsiella variicola FH-1 stimulates soybean growth and alleviates the stress of Sclerotinia sclerotiorum
ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao
2023, 22 (9): 2729-2745.   DOI: 10.1016/j.jia.2023.01.007
Abstract240)      PDF in ScienceDirect      

Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a destructive soil-borne disease leading to huge yield loss.  We previously reported that Klebsiella variicola FH-1 could degrade atrazine herbicides, and the vegetative growth of atrazine-sensitive crops (i.e., soybean) was significantly increased in the FH-1-treated soil.  Interestingly, we found that FH-1 could promote soybean growth and induce resistance to Ssclerotiorum.  In our study, strain FH-1 could grow in a nitrogen-free environment, dissolve inorganic phosphorus and potassium, and produce indoleacetic acid and a siderophore.  The results of pot experiments showed that Kvariicola FH-1 promoted soybean plant development, substantially improving plant height, fresh weight, and root length, and induced resistance against Ssclerotiorum infection in soybean leaves.  The area under the disease progression curve (AUDPC) for treatment with strain FH-1 was significantly lower than the control and was reduced by up to 42.2% within 48 h (P<0.001).  Moreover, strain FH-1 rcovered the activities of catalase, superoxide dismutase, peroxidase, phenylalanine ammonia lyase, and polyphenol oxidase, which are involved in plant protection, and reduced malondialdehyde accumulation in the leaves.  The mechanism of induction of resistance appeared to be primarily resulted from the enhancement of transcript levels of PR10, PR12, AOS, CHS, and PDF1.2 genes.  The colonization of FH-1 on soybean root, determined using CLSM and SEM, revealed that FH-1 colonized soybean root surfaces, root hairs, and exodermis to form biofilms.  In summary, Kvariicola FH-1 exhibited the biological control potential by inducing resistance in soybean against Ssclerotiorum infection, providing new suggestions for green prevention and control.

Reference | Related Articles | Metrics
Substituting nitrogen and phosphorus fertilizer with optimal amount of crop straw improved rice grain yield, nutrient use efficiency and soil carbon sequestration
XIE Jun, Blagodatskaya EVGENIA, ZHANG Yu, WAN Yu, HU Qi-juan, ZHANG Cheng-ming, WANG Jie, ZHANG Yue-qiang, SHI Xiao-jun
2022, 21 (11): 3345-3355.   DOI: 10.1016/j.jia.2022.08.059
Abstract363)      PDF in ScienceDirect      

Crop straw return after harvest is considered an important way to achieve both agronomic and environmental benefits.  However, the appropriate amount of straw to substitute for fertilizer remains unclear.  A field experiment was performed from 2016 to 2018 to explore the effect of different amounts of straw to substitute for fertilizer on soil properties, soil organic carbon (SOC) storage, grain yield, yield components, nitrogen (N) use efficiency, phosphorus (P) use efficiency, N surplus, and P surplus after rice harvesting.  Relative to mineral fertilization alone, straw substitution at 5 t ha–1 improved the number of spikelets per panicle, effective panicle, seed setting rate, 1 000-grain weight, and grain yield, and also increased the aboveground N and P uptake in rice.  Straw substitution exceeding 2.5 t ha–1 increased the soil available N, P, and K concentrations as compared with mineral fertilization, and different amounts of straw substitution improved SOC storage compared with mineral fertilization.  Furthermore, straw substitution at 5 t ha–1 decreased the N surplus and P surplus by up to 68.3 and 28.9%, respectively, compared to mineral fertilization.  Rice aboveground N and P uptake and soil properties together contributed 19.3% to the variation in rice grain yield and yield components.  Straw substitution at 5 t ha–1, an optimal fertilization regime, improved soil properties, SOC storage, grain yield, yield components, N use efficiency (NUE), and P use efficiency (PUE) while simultaneously decreasing the risk of environmental contamination.

Reference | Related Articles | Metrics
Contrasting resilience of soil microbial biomass, microbial diversity and ammonification enzymes under three applied soil fumigants
SUN Zhen-cai, LI Gui-tong, ZHANG Cheng-lei, WANG Zhi-min, LIN Qi-mei, ZHAO Xiao-rong
2020, 19 (10): 2561-2570.   DOI: 10.1016/S2095-3119(20)63201-4
Abstract121)      PDF in ScienceDirect      
Fumigation is a widely applied approach to mitigate the soil-borne diseases.  However, the potential effects of currently applied fumigants on ammonification remain unclear.  An 84-day incubation experiment was conducted based on non-fumigated soil (CK) and fumigated soil using three common fumigants, i.e., chloropicrin (CP), 1,3-dichloropropene (1,3-D), and metam sodium (MS).  The results showed that, the three fumigants all decreased the microbial C, and the largest reduction (84.7%) occurred with the application of CP.  After fumigation, the microbial diversity in the CP treatment rapidly recovered, but that in the 1,3-D treatment decreased and did not recover by the end of the experiment.  The application of MS showed no impact on the microbial diversity during the assay, indicating that significantly different microbial diversity can be achieved by choosing different fumigants.  Furthermore, the three fumigants showed divergent effects on the enzymes involved in ammonification.  The analysis showed that the enzyme variation with CP application was mainly associated with the changed microbial C and N (P<0.05), and not with the microbial community, which was different from the observed effects of 1,3-D or MS application.  In addition, the soil quality index showed that CP was still significantly harmful at the end of incubation compared with the good resilience of MS, indicating that CP may not be a suitable fumigant.
Reference | Related Articles | Metrics
Endogenous nitric oxide and hydrogen peroxide detection in indole- 3-butyric acid-induced adventitious root formation in Camellia sinensis
WEI Kang, WANG Li-yuan, RUAN Li, ZHANG Cheng-cai, WU Li-yun, LI Hai-lin, CHENG Hao
2018, 17 (10): 2273-2280.   DOI: 10.1016/S2095-3119(18)62059-3
Abstract298)      PDF in ScienceDirect      
Nitric oxide (NO) and hydrogen peroxide (H2O2) are essential signaling molecules with key roles in auxin induced adventitious root formation in many plants.  However, whether they are the sole determinants for adventitious root formation is worth further study.  In this study, endogenous NO and H2O2 were monitored in tea cutting with or without indole-3-butyric acid (IBA) treatment by using the fluorescent probes diaminofluorescein diacetate (DAF-2DA) and 2’,7’-dichlorodihydrofluorescein diacetate (DCF-DA), respectively.  The overproduction of NO and H2O2 was detected in the rooting parts of tea cuttings treated with or without IBA.  But little NO and H2O2 was detected before the initiation phase of tea cuttings even with IBA treatment indicating that they might be not directly induced by IBA.  Further carbon and nitrogen analysis found that the overproduction of NO and H2O2 were coincident with the consumption of soluble sugars and the assimilation of nitrogen.  These results suggest that rooting phases should be taken into consideration with the hypothesis that auxin induces adventitious root formation via NO- and H2O2-dependent pathways and sink establishment might be a prerequisite for NO and H2O2 mediated adventitious root formation. 
Reference | Related Articles | Metrics
Uptake and translocation of organic pollutants in plants: A review
ZHANG Cheng, FENG Yao, LIU Yuan-wang, CHANG Hui-qing, LI Zhao-jun, XUE Jian-ming
2017, 16 (08): 1659-1668.   DOI: 10.1016/S2095-3119(16)61590-3
Abstract856)      PDF in ScienceDirect      
    Organic pollutants, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), antibiotics, herbicides, and bisphenol A (BPA), are commonly found in agricultural environments. They are released into the environment as a result of their use for human health purposes and farm management activities, and are often discharged as waste-water effluents. Most of these organic pollutants are taken up by plants through roots and leaves, and when they enter the tissue, they cause serious damage to the plants. Although the toxicity of organic pollutants to plants, especially to plant cells, has been intensively studied, a systematic review of these studies is lacking. Here we review researches on the toxicity of organic pollutants, their uptake, and translocation in plants. Our objective is to assemble existing knowledge concerning the interaction of organic pollutants with plants, which should be useful for the development of plant-based systems for removing pollutants from aquatic and agricultural environments.
Reference | Related Articles | Metrics