Propylea japonica (Coleoptera: Coccinellidae) is a natural enemy insect with a wide range of predation in Chinese mainland and is commonly used in pest management. However, its genetic pattern (i.e., genetic variation, genetic structure, and historical population dynamics) is still unclear, impeding the development of biological control of insect pests. Population genetic research has the potential to optimize strategies at different stages of the biological control processes. This study used 23 nuclear microsatellite sites and mitochondrial COI genes to investigate the population genetics of Propylea japonica based on 462 specimens collected from 30 sampling sites in China. The microsatellite dataset showed a moderate level of genetic diversity, but the mitochondrial genes showed a high level of genetic diversity. Populations from the Yellow River basin were more genetically diverse than those in the Yangtze River basin. Propylea japonica has not yet formed a significant genealogical structure in China, but there was a population structure signal to some extent, which may be caused by frequent gene flow between populations. The species has experienced population expansion after a bottleneck, potentially thanks to the tri-trophic plant–insect–natural enemy relationship. Knowledge of population genetics is of importance in using predators to control pests. Our study complements existing knowledge of an important natural predator in agroecosystems through estimating its genetic diversity and population differentiation and speculating about historical dynamics.
Chemicals that modify pest behavior are developed to reduce crop damage by altering pest behavior, using specific genes within the olfactory system as molecular targets. The identification of these molecular targets in Bactrocera dorsalis, also known as the functional study of key olfactory genes, relies on CRISPR/Cas9-mediated gene knockout techniques. However, these techniques face limitations when applied to lethal genes. Transgenic technology offers a solution since it enables precise manipulation of gene expression in specific tissues or during certain developmental stages. Consequently, this study developed a piggyBac-mediated transgenic system in B. dorsalis to investigate reporter gene expression in olfactory organs, and assessed the olfactory behavior and antennal electrophysiological responses in transgenic lines. The goal was to assess the potential of this approach for future research on olfactory gene function. A universally expressed housekeeping gene from the BdorActin family was identified using the developmental transcriptome dataset. Its candidate promoter region (BdorActinA3a-1P-2k) was then cloned into the piggyBac plasmid. We subsequently established two stable transgenic lines with specific TTAA insertion sites on chromosomes 4 and 5, consistent with the characteristics of piggyBac transposition. The transgenic strains exhibited essentially normal survival, with hatchability and adult lifespan unaffected, although there were slight reductions in the emergence rate and oviposition capacity. The fluorescent reporter has been successfully expressed in olfactory-related organs, such as the antennae, proboscis, maxillary palp, legs, external genitalia, and brain. The antennal electrophysiological responses to representative chemicals in the transgenic lines were consistent with those of the wild type. However, some olfactory-related behaviors, such as pheromone response and mating, were significantly affected in the transgenic lines. These findings suggest that our system could potentially be applied in future olfactory research, such as driving the expression of exogenous elements that are effective in olfactory organs. However, caution is advised regarding its impact when applied to some olfactory-related behavioral phenotypes.