Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Effects of the combined application of organic and chemical nitrogen fertilizer on soil aggregate carbon and nitrogen: A 30-year study
BAI Jin-shun, ZHANG Shui-qing, HUANG Shao-min, XU Xin-peng, ZHAO Shi-cheng, QIU Shao-jun, HE Ping, ZHOU Wei
2023, 22 (11): 3517-3534.   DOI: 10.1016/j.jia.2023.09.012
Abstract203)      PDF in ScienceDirect      

To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C (SOC) and total N (TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-Huai-Hai Plain during 1990–2019.  The experimental treatments consisted of five fertilizer regimes: no fertilizer (control), chemical fertilizer only (NPK), chemical fertilizer with straw (NPKS), chemical fertilizer with manure (NPKM), and 1.5 times the rate of NPKM (1.5NPKM).  The NPK, NPKS, and NPKM treatments had equal N inputs.  The crop yields were measured over the whole experimental duration.  Soil samples were collected from the topsoil (0–10 and 10–20 cm) and subsoil (20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements.  Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil (24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers (22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments (NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment.  The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions (19.8 and 27.0%) than the NPK treatment.  However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions (–19.2 and –29.1%) than the control.  The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions (i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively.  The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72 (P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage.  The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.


Reference | Related Articles | Metrics
Genetic diversity analysis and GWAS reveal the adaptive loci of milling and appearance quality of japonica (oryza sativa L.) in Northeast China
XU Xin, YE Jun-hua, YANG Ying-ying, LI Ruo-si, LI Zhen, WANG Shan, SUN Yan-fei, ZHANG Meng-chen, XU Qun, FENG Yue, WEI Xing-hua, YANG Yao-long
2022, 21 (6): 1539-1550.   DOI: 10.1016/S2095-3119(21)63701-2
Abstract387)      PDF in ScienceDirect      
Milling and appearance quality are important contributors to rice grain quality.  Abundant genetic diversity and a suitable environment are crucial for rice improvement.  In this study, we investigated the milling and appearance quality-related traits in a panel of 200 japonica rice cultivars selected from Liaoning, Jilin and Heilongjiang provinces in Northeast China.  Pedigree assessment and genetic diversity analysis indicated that cultivars from Jilin harbored the highest genetic diversity among the three geographic regions.  An evaluation of grain quality indicated that cultivars from Liaoning showed superior milling quality, whereas cultivars from Heilongjiang tended to exhibit superior appearance quality.  Single- and multi-locus genome-wide association studies (GWAS) were conducted to identify loci associated with milling and appearance quality-related traits.  Ninety-nine significant single-nucleotide polymorphisms (SNPs) were detected.  Three common SNPs were detected using the mixed linear model (MLM), mrMLM, and FASTmrMLM methods.  Linkage disequilibrium decay was estimated and indicated three candidate regions (qBRR-1, qBRR-9 and qDEC-3) for further candidate gene analysis.  More than 300 genes were located in these candidate regions.  Gene Ontology (GO) analysis was performed to discover the potential candidate genes.  Genetic diversity analysis of the candidate regions revealed that qBRR-9 may have been subject to strong selection during breeding.  These results provide information that will be valuable for the improvement of grain quality in rice breeding.
Reference | Related Articles | Metrics
Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and random forest
LIU Ying-xia, Gerard B. M. HEUVELINK, Zhanguo BAI, HE Ping, JIANG Rong, HUANG Shao-hui, XU Xin-peng
2022, 21 (12): 3637-3657.   DOI: 10.1016/j.jia.2022.08.054
Abstract342)      PDF in ScienceDirect      

Understanding the spatial-temporal dynamics of crop nitrogen (N) use efficiency (NUE) and the relationship with explanatory environmental variables can support land-use management and policymaking.  Nevertheless, the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.  In this study, stepwise multiple linear regression (SMLR) and Random Forest (RF) were used to evaluate the spatial and temporal variation of NUE indicators (i.e., partial factor productivity of N (PFPN); partial nutrient balance of N (PNBN)) at county scale in Northeast China (Heilongjiang, Liaoning and Jilin provinces) from 1990 to 2015.  Explanatory variables included agricultural management practices, topography, climate, economy, soil and crop types.  Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.  The NUE indicators decreased with time in most counties during the study period.  The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN, and 0.67 and 0.89 for PNBN, respectively.  The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.  The planting area index of vegetables and beans, soil clay content, saturated water content, enhanced vegetation index in November & December, soil bulk density, and annual minimum temperature were the main explanatory variables for both NUE indicators.  This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.  This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development, ensuring food security, alleviating environmental degradation and increasing farmer’s profitability.



Reference | Related Articles | Metrics
An entirely new approach based on remote sensing data to calculate the nitrogen nutrition index of winter wheat
ZHAO Yu, WANG Jian-wen, CHEN Li-ping, FU Yuan-yuan, ZHU Hong-chun, FENG Hai-kuan, XU Xin-gang, LI Zhen-hai
2021, 20 (9): 2535-2551.   DOI: 10.1016/S2095-3119(20)63379-2
Abstract215)      PDF in ScienceDirect      
The nitrogen nutrition index (NNI) is a reliable indicator for diagnosing crop nitrogen (N) status.  However, there is currently no specific vegetation index for the NNI inversion across multiple growth periods.  To overcome the limitations of the traditional direct NNI inversion method (NNIT1) of the vegetation index and traditional indirect NNI inversion method (NNIT2) by inverting intermediate variables including the aboveground dry biomass (AGB) and plant N concentration (PNC), this study proposed a new NNI remote sensing index (NNIRS).  A remote-sensing-based critical N dilution curve (Nc_RS) was set up directly from two vegetation indices and then used to calculate NNIRS.  Field data including AGB, PNC, and canopy hyperspectral data were collected over four growing seasons (2012–2013 (Exp.1), 2013–2014 (Exp. 2), 2014–2015 (Exp. 3), 2015–2016 (Exp. 4)) in Beijing, China.  All experimental datasets were cross-validated to each of the NNI models (NNIT1, NNIT2 and NNIRS).  The results showed that: (1) the NNIRS models were represented by the standardized leaf area index determining index (sLAIDI) and the red-edge chlorophyll index (CIred edge) in the form of NNIRS=CIred edge/(a×sLAIDIb), where “a” equals 2.06, 2.10, 2.08 and 2.02 and “b” equals 0.66, 0.73, 0.67 and 0.62 when the modeling set data came from Exp.1/2/4, Exp.1/2/3, Exp.1/3/4, and Exp.2/3/4, respectively; (2) the NNIRS models achieved better performance than the other two NNI revised methods, and the ranges of R2 and RMSE were 0.50–0.82 and 0.12–0.14, respectively; (3) when the remaining data were used for verification, the NNIRS models also showed good stability, with RMSE values of 0.09, 0.18, 0.13 and 0.10, respectively.  Therefore, it is concluded that the NNIRS method is promising for the remote assessment of crop N status.
Reference | Related Articles | Metrics
Peanut yield, nutrient uptake and nutrient requirements in different regions of China
ZHAO Shi-cheng, LÜ Ji-long, XU Xin-peng, LIN Xiao-mao, Luiz Moro ROSSO, QIU Shao-jun, Ignacio CIAMPITTI, HE Ping
2021, 20 (9): 2502-2511.   DOI: 10.1016/S2095-3119(20)63253-1
Abstract147)      PDF in ScienceDirect      
Nutrient balance is essential for attaining high yield and improving profits in agricultural farming systems, and crop nutrient uptake ratio and stoichiometry can indicate crop nutrient limitations in the field.  We collected a large amount of field data to study the variations in yield, nutrient uptake and nutrient stoichiometry of peanut (Arachis hypogaea L.) in Southeast China (SEC), North-central China (NCC), and Northeast China (NEC), during 1993 to 2018.  Peanut pod yield gradually increased from 1993 to 2018, with average yields of 4 148, 5 138, and 4 635 kg ha–1 in SEC, NCC, and NEC, respectively.  The nitrogen (N) internal efficiency (NIE, yield to N uptake ratio) was similar among the three regions, but phosphorus (P) IE (PIE, yield to P uptake ratio) changed from low to high among regions: NCC<SEC<NEC, while potassium (K) IE (KIE, yield to K uptake ratio) portrayed a different pattern of SEC<NCC<NEC.  Based on the nutrient IE, to produce 1 Mg of pod yield, the average N, P, and K requirements of the above-ground parts of peanut were roughly 47.2, 5.1, and 25.5 kg in SEC, 44.8, 5.7, and 20.6 kg in NCC, and 44.6, 4.4, and 14.7 kg in NEC, respectively.  The N/P ratio changed in the sequence NCC<SEC<NEC, and the N/K ratio was similar in NEC and NCC, but lower in SEC.  The N harvest index (HI) and KHI declined with increasing nutrient uptake across all regions under high nutrient uptake.  The low PIE and N/P ratios in NCC could be explained by the high P accumulation in stover, and high KIE and N/K ratios in NEC may be attributed to the low soil K supply.  The frontier analysis approach provides a practical framework and allows documentation of a decline in nutrient HI as nutrient uptake increases.  Lastly, this study reveals the limitation and surplus of nutrients of peanut in different regions of China.
Reference | Related Articles | Metrics
Characteristics of maize residue decomposition and succession in the bacterial community during decomposition in Northeast China
ZHAO Shi-cheng, Ignacio A. CIAMPITTI, QIU Shao-jun, XU Xin-peng, HE Ping
2021, 20 (12): 3289-3298.   DOI: 10.1016/S2095-3119(20)63570-5
Abstract146)      PDF in ScienceDirect      
Microbes are decomposers of crop residues, and climatic factors and residue composition are known to influence microbial growth and community composition, which in turn regulate residue decomposition.  However, the succession of the bacterial community during residue decomposition in Northeast China is not well understood.  To clarify the property of bacterial community succession and the corresponding factors regulating this succession, bags containing maize residue were buried in soil in Northeast China in October, and then at different intervals over the next 2 years, samples were analyzed for residue mass and bacterial community composition.  After residue burial in the soil, the cumulative residue mass loss rates were 18, 69, and 77% after 5, 12, and 24 months, respectively.  The release of residue nitrogen, phosphorus, and carbon followed a similar pattern as mass loss, but 79% of residue potassium was released after only 1 month.  The abundance, richness, and community diversity of bacteria in the residue increased rapidly and peaked after 9 or 20 months.  Residue decomposition was mainly influenced by temperature and chemical composition in the early stage, and was influenced by chemical composition in the later stage.  Phyla Actinobacteria, Bacteroidetes, and Firmicutes dominated the bacterial community composition in residue in the early stage, and the abundances of phyla Chloroflexi, Acidobacteria, and Saccharibacteria gradually increased in the later stage of decomposition.  In conclusion, maize residue decomposition in soil was greatly influenced by temperature and residue composition in Northeast China, and the bacterial community shifted from dominance of copiotrophic populations in the early stage to an increase in oligotrophic populations in the later stage. 
 
Reference | Related Articles | Metrics
Identification of quantitative trait loci and candidate genes controlling seed pigments of rapeseed
ZHU Mei-chen, HU Ran, ZHAO Hui-yan, TANG Yun-shan, SHI Xiang-tian, JIANG Hai-yan, ZHANG Zhi-yuan, FU Fu-you, XU Xin-fu, TANG Zhang-lin, LIU Lie-zhao, LU Kun, LI Jia-na, QU Cun-min
2021, 20 (11): 2862-2879.   DOI: 10.1016/S2095-3119(20)63377-9
Abstract163)      PDF in ScienceDirect      
Rapeseed (Brassica napus L.) is an important source of edible vegetable oil and feed protein; however, seed pigments affect the quality of rapeseed oil and the feed value of the residue from oil pressing.  Here, we used a population of rapeseed recombinant inbred lines (RILs) derived from the black-seeded male parent cultivar Zhongyou 821 and the yellow-seeded female parent line GH06 to map candidate genes controlling seed pigments in embryos and the seed coat.  We detected 94 quantitative trait loci (QTLs) for seed pigments (44 for embryos and 50 for seed coat), distributed over 15 of the 19 rapeseed chromosomes.  These included 28 QTLs for anthocyanidin content, explaining 2.41–44.66% of phenotypic variation; 24 QTLs for flavonoid content, explaining 2.41–20.26% of phenotypic variation; 16 QTLs for total phenol content, accounting for 2.74–23.68% of phenotypic variation; and 26 QTLs for melanin content, accounting for 2.37–24.82% of phenotypic variation, indicating that these traits are under multigenic control.  Consensus regions on chromosomes A06, A09 and C08 were associated with multiple seed pigment traits, including 15, 19 and 10 QTLs, respectively, most of which were major QTLs explaining >10% of the phenotypic variation.  Based on the annotation of the B. napus “Darmor-bzh” reference genome, 67 candidate genes were predicted from these consensus QTLs regions, and 12 candidate genes were identified as potentially involved in pigment accumulation by RNA-seq and qRT-PCR analysis.  These preliminary results provide insight into the genetic architecture of pigment biosynthesis and lay a foundation for exploring the molecular mechanisms underlying seed coat color in B. napus.
Reference | Related Articles | Metrics
Regional distribution of wheat yield and chemical fertilizer requirements in China
XU Xin-peng, HE Ping, CHUAN Li-min, LIU Xiao-yan, LIU Ying-xia, ZHANG Jia-jia, HUANG Xiao-meng, QIU Shao-jun, ZHAO Shi-cheng, ZHOU Wei
2021, 20 (10): 2772-2780.   DOI: 10.1016/S2095-3119(20)63338-X
Abstract159)      PDF in ScienceDirect      
Quantification of currently attainable yield and fertilizer requirements can provide detailed information for assessing the food supply capacity and offer data support for agricultural decision-making.  Datasets from a total of 5 408 field experiments were collected from 2000 to 2015 across the major wheat production regions in China to analyze the spatial distribution of wheat yield, the soil nutrient supply capacity (represented by relative yield, defined as the ratio of the yield under the omission of one of nitrogen (N), phosphorus (P) and potassium (K) to the yield under the full NPK fertilizer application), and N, P and K fertilizer requirements by combining the kriging interpolation method with the Nutrient Expert Decision Support System for Wheat.  The results indicated that the average attainable yield was 6.4 t ha−1, with a coefficient of variation (CV) of 24.9% across all sites.  The yields in North-central China (NCC) and the northern part of the Middle and Lower reaches of the Yangtze River (MLYR) were generally higher than 7 t ha−1, whereas the yields in Southwest China (SWC), Northeast China (NEC), and the eastern part of Northwest China (NWC) were usually less than 6 t ha−1.  The precentage of area having a relative yield above 0.70, 0.85, and 0.85 for N, P, and K fertilizers accounted for 52.3, 74.7, and 95.9%, respectively.  Variation existed in N, P, and K fertilizer requirements, with a CV of 24.8, 23.9, and 29.9%, respectively, across all sites.  More fertilizer was needed in NCC and the northern part of the MLYR than in other regions.  The average fertilizer requirement was 162, 72, and 57 kg ha−1 for N, P2O5, and K2O fertilizers, respectively, across all sites.  The incorporation of the spatial variation of attainable yield and fertilizer requirements into wheat production practices would benefit sustainable wheat production and environmental safety.
Reference | Related Articles | Metrics
Principles and practices of the photo-thermal adaptability improvement in soybean
ZHANG Li-xin, LIU Wei, Mesfin Tsegaw, XU Xin, QI Yan-ping, Enoch Sapey, LIU Lu-ping, WU Ting-ting, SUN Shi, HAN Tian-fu
2020, 19 (2): 295-310.   DOI: 10.1016/S2095-3119(19)62850-9
Abstract204)      PDF in ScienceDirect      
As a short-day (SD) and thermophilic plant, soybean (Glycine max (L.) Merr.) is sensitive to photo-thermal conditions.  This characteristic severely limits the cultivation range of a given soybean cultivar and affects the performances of agronomic traits such as yield, plant architectures, and seed quality.  Therefore, understanding the mechanism of photo-thermal sensitivity will provide a theoretical basis for soybean improvement.  In this review, we introduce the advances in physiological, genetic, and molecular researches in photoperiodism of soybean, and progress in the improvement of the photo-thermal adaptability.  We also summarize the photo-thermal conditions and characteristics of widely-planted soybean cultivars of major production regions in China.  Furthermore, we proposed a novel concept of ‘ecotyping’ and the strategies for widely-adapted soybean cultivar breeding.  This review provides an important guide for improving the adaptability of soybean.
 
Related Articles | Metrics
Global sensitivity analysis of wheat grain yield and quality and the related process variables from the DSSAT-CERES model based on the extended Fourier Amplitude Sensitivity Test method
LI Zhen-hai, JIN Xiu-liang, LIU Hai-long, XU Xin-gang, WANG Ji-hua
2019, 18 (7): 1547-1561.   DOI: 10.1016/S2095-3119(18)62046-5
Abstract207)      PDF in ScienceDirect      
A crop growth model, integrating genotype, environment, and management factor, was developed to serve as an analytical tool to study the influence of these factors on crop growth, production, and agricultural planning.  A major challenge of model application is the optimization and calibration of a considerable number of parameters.  Sensitivity analysis (SA) has become an effective method to identify the importance of various parameters.  In this study, the extended Fourier Amplitude Sensitivity Test (EFAST) approach was used to evaluate the sensitivity of the DSSAT-CERES model output responses of interest to 39 crop genotype parameters and six soil parameters.  The outputs for the SA included grain yield and quality (take grain protein content (GPC) as an indicator) at maturity stage, as well as leaf area index, aboveground biomass, and aboveground nitrogen accumulation at the critical process variables.  The key results showed that: (1) the influence of parameter bounds on the sensitivity results was slight and less than the impacts from the significance of the parameters themselves; (2) the sensitivity parameters of grain yield and GPC were different, and the sensitivity of the interactions between parameters to GPC was greater than those between the parameters to grain yield; and (3) the sensitivity analyses of some process variables, including leaf area index, aboveground biomass, and aboveground nitrogen accumulation, should be performed differently.  Finally, some parameters, which improve the model’s structure and the accuracy of the process simulation, should not be ignored when maturity output as an objective variable is studied.
Reference | Related Articles | Metrics
Identification of SNPs and expression patterns of FZD3 gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type)
ZHAO Bing-ru, FU Xue-feng, TIAN Ke-chuan, HUANG Xi-xia, DI Jiang, BAI Yan, XU Xin-ming, TIAN Yue-zhen, WU Wei-wei, ABLAT Sulayman, ZENG Wei-dan, HANIKEZI Tulafu
2019, 18 (10): 2351-2360.   DOI: 10.1016/S2095-3119(19)62735-8
Abstract153)      PDF in ScienceDirect      
As a member of the Frizzled family, Frizzled3 (FZD3) is a receptor of the canonical Wnt signaling pathway and plays a vital role in mammalian hair follicle developmental processes.  However, its effects on wool traits are not clear.  The objectives of this study were to identify the single nucleotide polymorphisms (SNPs) and the expression patterns of FZD3 gene, and then to determine whether it affected wool traits of Chinese Merino sheep (Xinjiang Type) or not.  PCR-single stranded conformational polymorphism (PCR-SSCP) and sequencing were used to identify mutation loci, and general linear model (GLM) with SAS 9.1 was used for the association analysis between wool traits and SNPs.  Quantitative real-time PCR (qRT-PCR) was used to investigate FZD3 gene expression levels.  The results showed that six exons of FZD3 gene were amplified and two mutation loci were identified in exon 1 (NC_019459.2: g.101771685 T>C (SNP1)) and exon 3 (NC_019459.2: g.101810848, A>C (SNP2)), respectively.  Association analysis showed that SNP1 was significantly associated with mean fiber diameter (MFD) (P=0.04) and live weight (LW) (P=0.0004), SNP2 was significantly associated with greasy fleece weight (GFW) (P=0.04).  The expression level of FZD3 gene in skin tissues of the superfine wool (SF) group was significantly lower (P<0.05) than that of the fine wool (F) group.  Moreover, it had a higher expression level (P<0.01) in skin tissues than in other tissues of Chinese Merino ewes.  While, its expression level had a fluctuant expression in skin tissues at different developmental stages of embryos and born lambs, with the highest expression levels (P<0.01) at the 65th day of embryos.  Our study revealed the genetic relationship between FZD3 variants and wool traits and two identified SNPs might serve as potential and valuable genetic markers for sheep breeding and lay a molecular genetic foundation for sheep marker-assisted selection (MAS).
Reference | Related Articles | Metrics
Global sensitivity analysis of the AquaCrop model for winter wheat under different water treatments based on the extended Fourier amplitude sensitivity test
XING Hui-min, XU Xin-gang, LI Zhen-hai, CHEN Yi-jin, FENG Hai-kuan, YANG Gui-jun, CHEN Zhao-xia
2017, 16 (11): 2444-2458.   DOI: 10.1016/S2095-3119(16)61626-X
Abstract680)      PDF in ScienceDirect      
Sensitivity analysis (SA) is an effective tool for studying crop models; it is an important link in model localization and plays an important role in crop model calibration and application.  The objectives were to (i) determine influential and non-influential parameters with respect to above ground biomass (AGB), canopy cover (CC), and grain yield of winter wheat in the Beijing area based on the AquaCrop model under different water treatments (rainfall, normal irrigation, and over-irrigation); and (ii) generate an AquaCrop model that can be used in the Beijing area by setting non-influential parameters to fixed values and adjusting influential parameters according to the SA results.  In this study, field experiments were conducted during the 2012–2013, 2013–2014, and 2014–2015 winter wheat growing seasons at the National Precision Agriculture Demonstration Research Base in Beijing, China.  The extended Fourier amplitude sensitivity test (EFAST) method was used to perform SA of the AquaCrop model using 42 crop parameters, in order to verify the SA results, data from the 2013–2014 growing season were used to calibrate the AquaCrop model, and data from 2012–2013 and 2014–2015 growing seasons were validated.  For AGB and yield of winter wheat, the total order sensitivity analysis had more sensitive parameters than the first order sensitivity analysis.  For the AGB time-series, parameter sensitivity was changed under different water treatments; in comparison with the non-stressful conditions (normal irrigation and over-irrigation), there were more sensitive parameters under water stress (rainfall), while root development parameters were more sensitive.  For CC with time-series and yield, there were more sensitive parameters under water stress than under no water stress.  Two parameters sets were selected to calibrate the AquaCrop model, one group of parameters were under water stress, and the others were under no water stress, there were two more sensitive parameters (growing degree-days (GDD) from sowing to the maximum rooting depth (root) and the maximum effective rooting depth (rtx)) under water stress than under no water stress.  The results showed that there was higher accuracy under water stress than under no water stress.  This study provides guidelines for AquaCrop model calibration and application in Beijing, China, as well providing guidance to simplify the AquaCrop model and improve its precision, especially when many parameters are used.  
Reference | Related Articles | Metrics
Functional identification of phenazine biosynthesis genes in plant pathogenic bacteria Pseudomonas syringae pv. tomato and Xanthomonas oryzae pv. oryzae
LI Wen, XU You-ping, Jean-Pierre Munyampundu, XU Xin, QI Xian-fei, GU Yuan, CAI Xin-zhong
2016, 15 (4): 812-821.   DOI: 10.1016/S2095-3119(15)61176-5
Abstract1869)      PDF in ScienceDirect      
Phenazines are secondary metabolites with broad spectrum antibiotic activity and thus show high potential in biological control of pathogens. In this study, we identified phenazine biosynthesis (phz) genes in two genome-completed plant pathogenic bacteria Pseudomonas syringae pv. tomato (Pst) DC3000 and Xanthomonas oryzae pv. oryzae (Xoo) PXO99A. Unlike the phz genes in typical phenazine-producing pseudomonads, phz homologs in Pst DC3000 and Xoo PXO99A consisted of phzC/D/E/F/G and phzC/E1/E2/F/G, respectively, and the both were not organized into an operon. Detection experiments demonstrated that phenazine-1-carboxylic acid (PCA) of Pst DC3000 accumulated to 13.4 μg L–1, while that of Xoo PXO99A was almost undetectable. Moreover, Pst DC3000 was resistant to 1 mg mL–1 PCA, while Xoo PXO99A was sensitive to 50 μg mL–1 PCA. Furthermore, mutation of phzF blocked the PCA production and significantly reduced the pathogenicity of Pst DC3000 in tomato, while the complementary strains restored these phenotypes. These results revealed that Pst DC3000 produces low level of and is resistant to phenazines and thus is unable to be biologically controlled by phenazines. Additionally, phz-mediated PCA production is required for full pathogenicity of Pst DC3000. To our knowledge, this is the first report of PCA production and its function in pathogenicity of a plant pathogenic P. syringae strain.
Reference | Related Articles | Metrics
Genome Array on Differentially Expressed Genes of Skin Tissue in Cashmere Goat at Early Anagen of Cashmere Growth Cycle Using DNA Microarray
DI Jiang, XU Xin-ming, Lazate Ainiwaer, ZHANG Yan-hua, TIAN Ke-chuan, YU Li-juan, WU Weiwei, Hanikezi Tulafu, FU Xue-feng , Marzeya Yasen
2014, 13 (10): 2243-2252.   DOI: 10.1016/S2095-3119(13)60606-1
Abstract1192)      PDF in ScienceDirect      
In order to study the molecular mechanism involved in cashmere regeneration, this study investigated the gene expression profile of skin tissue at various stages of the cashmere growth cycle and screen differentially expressed genes at proangen in 10 cashmere goats at 2 years of age using agilent sheep oligo microarray. Significance analysis of microarray (SAM) methods was used to identify the differentially expressed genes, Hierarchical clustering was performed to clarify these genes in association with different cashmere growth stages, and GO (Gene ontology) and the pathway analyses were con-ducted by a free web-based Molecular Annotation System3.0 (MAS 3.0). Approximately 10200 probe sets were detected in skin tissue of 2-yr-old cashmere goat. After SAM analysis of the microarray data, totally 417 genes were shown to be differentially expressed at different cashmere growth stages, and 24 genes are significantly up-regulated (21) or down-regulated (3) at proangen concurrently compared to angen and telogen. Hierarchical clustering analysis clearly distinguished the differentially expressed genes of each stage. GO analysis indicated that these altered genes at proangen were predominantly involved in collagen fibril organization, integrin-mediated signaling pathway, cell-matrix adhesion, cell adhesion, transforming growth factor-β (TGF-β) receptor signaling pathway, regulation of cell growth. Kyoto encyclopedia of genes and genomes (KEGG) analysis showed that the significant pathways involved mainly included focal adhesion and extracellular matrixc (ECM)-receptor interaction. Some important genes involved in these biological processes, such as COL1A1, COL1A2, COL3A1, SPARC, CYR61 and CTGF, were related to tissue remolding and repairing and detected by more than one probe with similar expression trends at different stages of cashmere growth cycle. The different expression of these genes may contribute to understanding the molecular mechanism of cashmere regeneration.
Reference | Related Articles | Metrics
Exploring the Feasibility of Winter Wheat Freeze Injury by Integrating Grey System Model with RS and GIS
WANG Hui-fang, GUO wei, WANG Ji-hua, HUANG Wen-jiang, GU Xiao-he, DONG Ying-ying, XU Xin-gang
2013, 12 (7): 1162-1172.   DOI: 10.1016/S1671-2927(00)8927
Abstract1197)      PDF in ScienceDirect      
Winter wheat freeze injury is one of the main agro-meteorological disasters affecting wheat production. In order to evaluate the severity of freeze injury on winter wheat systematically, we proposed a grey-system model (GSM) to monitor the degree and the distribution of the winter wheat freeze injury. The model combines remote sensing (RS) and geographic information system (GIS) technology. It gave examples of wheat freeze injury monitoring applications in Gaocheng and Jinzhou of Hebei Province, China. We carried out a quantitative evaluation method study on the severity of winter wheat freeze injury. First, a grey relational analysis (GRA) was conducted. At the same time, the weights of the stressful factors were determined. Then a wheat freezing injury stress multiple factor spatial matrix was constructed using spatial interpolation technology. Finally, a winter wheat freeze damage evaluation model was established through grey clustering algorithm (GCA), and classifying the study area into three sub-areas, affected by severe, medium or light disasters. The evaluation model were verified by the Kappa model, the overall accuracy reached 78.82% and the Kappa coefficient was 0.6754. Therefore, through integration of GSM with RS images as well as GIS analysis, quantitative evaluation and study of winter wheat freeze disasters can be conducted objectively and accurately, making the evaluation model more scientific.
Reference | Related Articles | Metrics
Occurrence and Characterization of Pale, Soft, Exudative-Like Broiler Muscle Commercially Produced in China
ZHU Xue-shen, XU Xing-lian, MIN Hui-hui, ZHOU Guang-hong
2012, 12 (8): 1384-1390.   DOI: 10.1016/S1671-2927(00)8669
Abstract1267)      PDF in ScienceDirect      
Pale, soft, exudative-like (PSE-like) broiler muscle is a growing problem for meat industry all over the world. However, limited studies have been made to assess broiler meat quality in China. The aim of this study was to investigate the characteristics and incidence of PSE-like broiler muscle commercially produced in China. A total of 1 274 Pectoralis muscles of Arbor Acre broiler were randomly obtained from the processing line to determine the commercial incidence of PSE-like muscle based on color. Furthermore, broiler Pectoralis muscles selected from the 1 274 muscle samples were classified as PSE-like muscle (L*>53, n=33) and normal muscle (L*>48 and L*=53, n=33) to assess meat quality. It was determined that PSE-like muscle had lower muscle pH values, lower water-holding capacity (WHC), lower sarcoplasmic protein solubility, and lower total protein solubility than the normal muscle did. SDS-PAGE profile also showed that bands of approximate 96 and 24 kDa in sarcoplasmic protein and myofibrillar protein varied between these two groups, suggesting partial denaturation of sarcoplasmic proteins and precipitation on myofillarments. Correlation analysis showed that L* values have significant correlation with WHC and protein solubility. Furthermore, the distribution of L* values exhibited a normal curve with range varying from 42.70 to 58.37. It was considered that approximately 23.39% of the population was PSE-like muscle. These results suggest that PSE-like meat can represent a significant portion of commercially processed broiler breast meat in China and that the L* value measurement could be used to sort broiler meat quality using a cut-off point.
Reference | Related Articles | Metrics
Metabolite of Clostridium perfringens type A, palmitic acid, enhances porcine enteric coronavirus porcine epidemic diarrhea virus infection
Shanshan Qi, Haoyang Wu, Donghua Guo, Dan Yang, Yongchen Zhang, Ming Liu, Jingxuan Zhou, Jun Wang, Feiyu Zhao, Wenfei Bai, Shiping Yu, Xu Yang, Hansong, Li, Fanbo Shen, Xingyang Guo, Xinglin Wang, Wei Zhou, Qinghe Zhu, Xiaoxu Xing, Chunqiu Li, Dongbo Sun
DOI: 10.1016/j.jia.2024.05.014 Online: 31 May 2024
Abstract56)      PDF in ScienceDirect      
The host intestinal microbiota has emerged as the third element in the interactions between hosts and enteric viruses, and potentially affects the infection processes of enteric viruses. However, the interaction of porcine enteric coronavirus with intestinal microorganisms during infection remains unclear. In this study, we used 16S-rRNA-based Illumina NovaSeq high-throughput sequencing to identify the changes in the intestinal microbiota of piglets mediated by porcine epidemic diarrhea virus (PEDV) infection and the effects of the alterations in intestinal bacteria on PEDV infection and its molecular mechanisms. The intestinal microbiota of PEDV-infected piglets had significantly less diversity than the healthy group and different bacterial community characteristics. Among the altered intestinal bacteria, the relative abundance of Clostridium perfringens was significantly increased in the PEDV-infected group. A strain of C. perfringens type A, named DQ21, was successfully isolated from the intestines of healthy piglets. The metabolites of swine C. perfringens type A strain DQ21 significantly enhanced PEDV replication in porcine intestinal epithelial cell clone J2 (IPEC-J2) cells, and PEDV infection and pathogenicity in suckling piglets. Palmitic acid (PA) was identified as one of those metabolites with metabolomic technology, and significantly enhanced PEDV replication in IPEC-J2 cells and PEDV infection and pathogenicity in suckling piglets. PA also increased the neutralizing antibody titer in the immune sera of mice. Furthermore, PA mediated the palmitoylation of the PEDV S protein, which improved virion stability and membrane fusion, thereby enhancing viral infection. Overall, our study demonstrates a novel mechanism of PEDV infection, with implications for PEDV pathogenicity.
Reference | Related Articles | Metrics