Compared with sole nitrate (NO3–) or sole ammonium (NH4+) supply, mixed nitrogen (N) supply may promote growth of maize seedlings. Previous study suggested that mixed N supply not only increased photosynthesis rate, but also enhanced leaf growth by increasing auxin synthesis to build a large sink for C and N utilization. However, whether this process depends on N absorption is unknown. Here, maize seedlings were grown hydroponically with three N forms (NO3– only, 75/25 NO3–/NH4+ and NH4+ only). The study results suggested that maize growth rate and N content of shoots under mixed N supply was little different to that under sole NO3– supply at 0–3 d, but was higher than under sole NO3– supply at 6–9 d. 15N influx rate under mixed N supply was greater than under sole NO3– or NH4+ supply at 6–9 d, although NO3– and NH4+ influx under mixed N supply were reduced compared to sole NO3– and NH4+ supply, respectively. qRT-PCR determination suggested that the increased N absorption under mixed N supply may be related to the higher expression of NO3– transporters in roots, such as ZmNRT1.1A, ZmNRT1.1B, ZmNRT1.1C, ZmNRT1.2 and ZmNRT1.3, or NH4+ absorption transporters, such as ZmAMT1.1A, especially the latter. Furthermore, plants had higher nitrate reductase (NR) glutamine synthase (GS) activity and amino acid content under mixed N supply than when under sole NO3– supply. The experiments with inhibitors of NR reductase and GS synthase further confirmed that N assimilation ability under mixed N supply was necessary to promote maize growth, especially for the reduction of NO3– by NR reductase. This research suggested that the increased processes of NO3– and NH4+ assimilation by improving N-absorption ability of roots under mixed N supply may be the main driving force to increase maize growth.
Numbers of vertebrae is an important economic trait associated with body size and meat productivity in animals. However, the genetic basis of vertebrae number in donkey remains to be well understood. The aim of this study was to identify candidate genes affecting the number of thoracic (TVn) and the number of lumbar vertebrae (LVn) in Dezhou donkey. A genome-wide association study was conducted using whole genome sequence data imputed from low-coverage genome sequencing. For TVn, we identified 38 genome-wide significant and 64 suggestive SNPs, which relate to 7 genes (NLGN1, DCC, SLC26A7, TOX, WNT7A, LOC123286078, and LOC123280142). For LVn, we identified 9 genome-wide significant and 38 suggestive SNPs, which relate to 8 genes (GABBR2, FBXO4, LOC123277146, LOC123277359, BMP7, B3GAT1, EML2, and LRP5). The genes involve in the Wnt and TGF-β signaling pathways and may play an important role in embryonic development or bone formation and could be good candidate genes for TVn and LVn.
Wheat grain yield is generally sink-limited during grain filling. The grain-filling rate (GFR) plays a vital role but is poorly studied due to the difficulty of phenotype surveys. This study explored the grain-filling traits in a recombinant inbred population and wheat collection using two highly saturated genetic maps for linkage analysis and genome-wide association study (GWAS). Seventeen stable additive quantitative trait loci (QTLs) were identified on chromosomes 1B, 4B, and 5A. The linkage interval between IWB19555 and IWB56078 showed pleiotropic effects on GFR1, GFRmax, kernel length (KL), kernel width (KW), kernel thickness (KT), and thousand kernel weight (TKW), with the phenotypic variation explained (PVE) ranging from 13.38% (KW) to 33.69% (TKW). 198 significant marker-trait associations (MTAs) were distributed across most chromosomes except for 3D and 4D. The major associated sites for GFR included IWB44469 (11.27%), IWB8156 (12.56%) and IWB24812 (14.46%). Linkage analysis suggested that IWB35850, identified through GWAS, was located in approximately the same region as QGFRmax2B.3-11, where two high-confidence candidate genes were present. Two important grain weight (GW)-related QTLs colocalized with grain-filling QTLs. The findings contribute to understanding the genetic architecture of the GFR and provide a basic approach to predict candidate genes for grain yield trait QTLs.