Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails

Genetic dissection of ear-related traits using immortalized F2 population in maize

GAO Ri-xin, HU Ming-jian, ZHAO Hai-ming, LAI Jin-sheng, SONG Wei-bin
2022, 21 (9): 2492-2507.   DOI: 10.1016/j.jia.2022.07.007
Abstract246)      PDF in ScienceDirect      

Ear-related traits are often selection targets for maize improvement.  This study used an immortalized F2 (IF2) population to elucidate the genetic basis of ear-related traits.  Twelve ear-related traits (namely, row number (RN), kernel number per row (KNPR), ear length (EL), ear diameter (ED), ten-kernel thickness (TKT), ear weight (EW), cob diameter (CD), kernel length (KL), kernel width (KW), grain weight per ear (GW), 100-kernel weight (HKW), and grain yield per plot (GY)), were collected from the IF2 population.  The ear-related traits were comprised of 265 crosses derived from 516 individuals of the recombinant inbred lines (RILs) under two separated environments in 2017 and 2018, respectively.  Quantitative trait loci (QTLs) analyses identified 165 ear traits related QTLs, which explained phenotypic variation ranging from 0.1 to 12.66%.  Among the 165 QTLs, 19 underlying nine ear-related traits (CD, ED, GY, RN, TKT, HKW, KL, GW, and KNPR) were identified across multiple environments and recognized as reliable QTLs.  Furthermore, 44.85% of the total QTLs showed an overdominance effect, and 12.72% showed a dominance effect. Additionally, we found 35 genomic regions exhibiting pleiotropic effects across the whole maize genome, and 17 heterotic loci (HLs) for RN, EL, ED and EW were identified.  The results provide insights into genetic components of ear-related traits and enhance the understanding of the genetic basis of heterosis in maize. 

Reference | Related Articles | Metrics
Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize 
LU Zhi-xiang, TU Guang-ping, ZHANG Ting, LI Ya-qian, WANG Xin-hua, Zhang Quan-guo, SONG Wei, CHEN Jie
2020, 19 (1): 145-152.   DOI: 10.1016/S2095-3119(19)62734-6
Abstract181)      PDF in ScienceDirect      
Maize is one of the major crops in China, but maize stalk rot occurs nationwide and has become one of the major challenges in maize production in China.  In order to find an environment-friendly and feasible technology to control this disease, a Trichoderma-based biocontrol agent was selected.  Forty-eight strains with various inhibition activities to Fusarium graminearum, and Fusarium verticillioides were tested.  A group of Trichoderma strains (DLY31, SG3403, DLY1303 and GDFS1009) were found to provide an inhibition rate to pathogen growth in vitro of over 70%.  These strains also prevented pathogen infection over 65% and promoted the maize seedling growth for the main root in vivo by over 50%.  Due to its advantage in antifungal activity against pathogens and promotion activity to maize, Trichoderma asperellum GDSF1009 was selected as the most promising strain of the biocontrol agent in the Trichoderma spectrum.  Pot experiments showed that the Trichoderma agent at 2–3 g/pot could achieve the best control of seedling stalk rot and promotion of maize seedling growth.  In the field experiments, 8–10 g/hole was able to achieve over 65% control to stalk rot, and yield increased by 2–11%.  In the case of natural morbidity, the control efficiency ranged from 27.23 to 48.84%, and the rate of yield increase reached 11.70%, with a dosage of Trichoderma granules at 75 kg ha–1.  Based on these results, we concluded that the Trichoderma agent is a promising biocontrol approach to stalk rot in maize.
Reference | Related Articles | Metrics
Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize
HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie
2019, 18 (3): 599-607.   DOI: 10.1016/S2095-3119(18)62089-1
Abstract217)      PDF (945KB)(226)      
Of diseases affecting maize (Zea mays), Fusarium graminearum is one of the most common pathogenic fungi that cause stalk rot.  In the present study, the Trichoderma asperellum GDFS1009 strain was shown to be an effective biocontrol agent against stalk rot.  In a confrontation culture test, Trichoderma strain displayed an approximately 60% inhibition rate on the mycelial growth of F. graminearum.  In pot trials, the application of 2 g/pot of T. asperellum GDFS1009 granules had the best control effect on stalk rot at the seedling stage (up to 53.7%), while the average plant height and fresh weight were also significantly improved.  Additionally when fertilizer was added at 8 g/pot, the application of 3 g/pot of Trichoderma granules had the best control effect on maize stalk rot (40.95%).  In field trials, when inoculating F. graminearum alone, the disease index for inoculating was 62.45, but only 31.43 after treatment with T. asperellum GDFS1009 granules, suggesting a control efficiency of 49.67%.  Furthermore, in a naturally F. graminearum-infected field, Trichoderma granules, when applied for 3 consecutive years, showed significant control of stalk rot and increased yields.
 
Reference | Related Articles | Metrics
Collision detection of virtual plant based on bounding volume hierarchy: A case study on virtual wheat
TANG Liang, SONG Wei-guo, HOU Tian-cheng, LIU Lei-lei, CAO Wei-xing, ZHU Yan
2018, 17 (2): 306-314.   DOI: 10.1016/S2095-3119(17)61769-6
Abstract802)      PDF in ScienceDirect      
Visualization of simulated crop growth and development is of significant interest to crop research and production.  This study aims to address the phenomenon of organs cross-drawing by developing a method of collision detection for improving vivid 3D visualizations of virtual wheat crops.  First, the triangular data of leaves are generated with the tessellation of non-uniform rational B-splines surfaces.  Second, the bounding volumes (BVs) and bounding volume hierarchies (BVHs) of leaves are constructed based on the leaf morphological characteristics and the collision detection of two leaves are performed using the Separating Axis Theorem.  Third, the detecting effect of the above method is compared with the methods of traditional BVHs, Axis-Aligned Bounding Box (AABB) tree, and Oriented Bounding Box (OBB) tree.  Finally, the BVs of other organs (ear, stem, and leaf sheath) in virtual wheat plant are constructed based on their geometric morphology, and the collision detections are conducted at the organ, individual and population scales.  The results indicate that the collision detection method developed in this study can accurately detect collisions between organs, especially at the plant canopy level with high collision frequency.  This collision detection-based virtual crop visualization method could reduce the phenomenon of organs cross-drawing effectively and enhance the reality of visualizations.
Reference | Related Articles | Metrics
Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China
CHEN Zhe, YANG Shi-qi, ZHANG Ai-ping, JING Xin, SONG Wei-min, MI Zhao-rong, ZHANG Qingwen, WANG Wen-ying, YANG Zheng-li
2018, 17 (01): 231-246.   DOI: 10.1016/S2095-3119(17)61738-6
Abstract614)      PDF in ScienceDirect      
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions.  However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear.  We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season.  Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition.  The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha–1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total.  The highest emission rates (199.2–257.4 μg m–2 h–1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter.  Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss.  The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass.  SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season.  Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.   
Reference | Related Articles | Metrics
Exploring differentially expressed genes associated with fertility instability of S-type cytoplasmic male-sterility in maize by RNA-seq
SU Ai-guo*, SONG Wei*, SHI Zi, ZHAO Yan-xin, XING Jin-feng, ZHANG Ru-yang, LI Chun-hui, LUO Mei-jie, WANG Ji-dong, ZHAO Jiu-ran
2017, 16 (08): 1689-1699.   DOI: 10.1016/S2095-3119(16)61494-6
Abstract952)      PDF in ScienceDirect      
The germplasm resources for the S-type male sterility is rich in maize and it is resistant to Bipolaris maydis race T and CI, but the commercial application of S-type cytoplasmic male sterility (CMS-S) in maize hybrid industry is greatly compromised because of its common fertility instability. Currently, the existence of multiple minor effect loci in specific nuclear genetic backgrounds was considered as the molecular mechanism for this phenomenon. In the present study, we evaluated the fertility segregation of the different populations with the fertility instable material FIL-H in two environments of Beijing and Hainan, China. Our results indicated that the fertility instability of FIL-H was regulated by multiple genes, and the expression of these genes was sensitive to environmental factors. Using RNA sequencing (RNA-seq) technology, transcriptomes of the sterile plants and partially fertile plants resulted from the backcross of FIL-H×Jing 724 in Hainan were analyzed and 2 108 genes with different expression were identified, including 1 951 up-regulated and 157 down-regulated genes. The cluster analysis indicated that these differentially expressed genes (DEGs) might play roles in many biological processes, such as the energy production and conversion, carbohydrate metabolism and signal transduction. In addition, the pathway of the starch and sucrose metabolism was emphatically investigated to reveal the DEGs during the process of starch biosynthesis between sterile and partially fertile plants, which were related to the key catalytic enzymes, such as ADP-G pyrophosphorylase, starch synthase and starch branching enzyme. The up-regulation of these genes in the partially fertile plant may promote the starch accumulation in its pollen. Our data provide the important theoretical basis for the further exploration of the molecular mechanism for the fertility instability in CMS-S maize.
Reference | Related Articles | Metrics
Differentiation of expression profiles of two calcineurin subunit genes in chicken skeletal muscles during early postnatal growth depending on anatomical location of muscles and breed
SHAN Yan-ju, XU Wen-juan, SHU Jing-ting, ZHANG Ming, SONG Wei-tao, TAO Zhi-yun, ZHU Chunhong, LI Hui-fang
2016, 15 (05): 1085-1094.   DOI: 10.1016/S2095-3119(15)61162-5
Abstract1780)      PDF in ScienceDirect      
  Calcineurin (Cn or CaN) is implicated in the control of skeletal muscle fiber phenotype and hypertrophy. However, little information is available concerning the expression of Cn in chickens. In the present study, the expression of two Cn subunit genes (CnAα and CnB1) was quantified by qPCR in the lateral gastrocnemius (LG, mainly composing of red fast-twitch myofibers), the soleus (mainly composing of red slow-twitch myofibers) and the extensor digitorum longus (EDL, mainly composing of white fast-twitch myofibers) from Qingyuan partridge chickens (QY, slow-growing chicken breed) and Recessive White chickens (RW, fast-growing chicken breed) on different days (1, 8, 22, 36, 50 and 64 days post-hatching). Although CnAα and CnB1 gene expressions were variable with different trends in different skeletal muscles in the two chicken breeds during postnatal growth, it is highly muscle phenotype and breed specific. In general, the levels of CnAα and CnB1 gene expressions of the soleus were lower than those of EDL and LG in both chicken breeds at the same stages. Compared between the two chicken breeds, the levels of CnAα gene expression of the three skeletal muscles in QY chickens were higher than those in RW chickens on days 1 and 22. However, on day 64, the levels of both CnAα and CnB1 gene expressions of the three skeletal muscles were lower in QY chickens than those in RW chickens. Correlation analysis of the levels of CnAα and CnB1 gene expressions of the same skeletal muscle showed that there were positive correlations for all three skeletal muscle tissues in two chicken breeds. These results provide some valuable clues to understand the role of Cn in the development of chicken skeletal muscles, with a function that may be related to meat quality.
Reference | Related Articles | Metrics
Spatial-Temporal Changes in Grain Production, Consumption and Driving Mechanism in China
XU Shi-wei, WU Jian-zhai, SONG Wei, LI Zhi-qiang, LI Zhe-min , KONG Fan-tao
2013, 12 (2): 374-385.   DOI: 10.1016/S2095-3119(13)60236-1
Abstract1594)      PDF in ScienceDirect      
The spatial-temporal patterns of grain production and consumption have an important influence on the effective national grain supply on condition of tight balance in the total grain amount in China. In this paper, we analyze the spatial-temporal patterns of grain production, consumption and the driving mechanism for their evolution processes in China. The results indicate that both gravity centers of grain production and consumption in China moved toward the northern and eastern regions, almost in the same direction. The coordination of grain production and consumption increased slightly from 1995 to 2007 but decreased from 2000 to 2007. There is a spatial difference between the major districts of output increase and the strong growth potential in grain consumption, which indicates an increasing difficulty in improving the regional coordination of grain production and consumption. The movement of the gravity center of grain production is significantly correlated with regional differences in grain production policy, different economic development models, and spatial disparity of land and water resource use. For grain consumption, the main driving factors include rapid urbanization, the upgrade of food consumption structure, and distribution of food industries.
Reference | Related Articles | Metrics