Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
TIMP2 promotes intramuscular fat deposition by regulating the extracellular matrix in chicken
CUI Huan-xian, LUO Na, GUO Li-ping, LIU Lu, XING Si-yuan, ZHAO Gui-ping, WEN Jie
2023, 22 (3): 853-863.   DOI: 10.1016/j.jia.2022.08.071
Abstract337)      PDF in ScienceDirect      

The interaction between myocytes and intramuscular adipocytes is a hot scientific topic.  Using a co-culture system, this study aims to investigate the regulation of intramuscular fat deposition in chicken muscle tissue through the interaction between myocyte and adipocyte and identify important intermediary regulatory factors.  Our proteomics data showed that the protein expression of tissue inhibitor of metalloproteinases 2 (TIMP2) increased significantly in the culture medium of the co-culture system, and the content of lipid droplets was more in the co-culture intramuscular adipocytes.  In addition, TIMP2 was significantly upregulated (P<0.01) in muscle tissue of individuals with high intramuscular fat content.  Weighted gene co-expression network analysis revealed that TIMP2 was mainly involved in the extracellular matrix receptor interaction signaling pathway and its expression was significantly correlated with triglyceride, intramuscular fat, C14:0, C14:1, C16:0, C16:1, and C18:1n9C levels.  Additionally, TIMP2 was co-expressed with various representative genes related to lipid metabolism (such as ADIPOQ, SCD, ELOVL5, ELOVL7, and LPL), as well as certain genes involved in extracellular matrix receptor interaction (such as COL1A2, COL4A2, COL5A1, COL6A1, and COL6A3), which are also significantly upregulated (P<0.05 or P<0.01) in muscle tissue of individuals with high intramuscular fat content.  Our findings reveal that TIMP2 promotes intramuscular fat deposition in muscle tissue through the extracellular matrix receptor interaction signaling pathway.

Reference | Related Articles | Metrics
Potential regulation of linoleic acid and volatile organic compound contents in meat of chickens by PLCD1
LIU Xiao-jing, WANG Yong-li, LIU Li, LIU Lu, ZHAO Gui-ping, WEN Jie, JIA Ya-xiong, CUI Huan-xian
2023, 22 (1): 222-234.   DOI: 10.1016/j.jia.2022.08.063
Abstract217)      PDF in ScienceDirect      

Omega-3 (linolenic acid (ALA), docosapentaenoic acid, eicosapentaenoic acid) and omega-6 (linoleic acid (LA), arachidonic acid) polyunsaturated fatty acids are essential for health and normal physiological functioning in humans.  Here we report a genome-wide association study (GWAS) on LA content in chicken meat.  The 19 significant single nucleotide polymorphisms (SNPs) identified by the GWAS approach were annotated in VILL, PLCD1 and OXSR1 genes with highly polymorphic linkage blocks, and explained 4.5% of the phenotypic variation in the LA content.  Specifically, the PLCD1 mRNA expression level was negatively correlated with the LA content, and significantly higher in chickens with low LA content than in those with high LA content.  In addition, PLCD1 was found to be involved in metabolic pathways, etc.  Furthermore, the LA content was correlated with volatile organic compounds (e.g., octanal, etc.), but no relationship was found with intramuscular fat and triglycerides in chicken meat.  The results indicated that there are key SNPs in PLCD1 that regulate the content of LA, and it has no significant effect on fat deposition, but may affect the content of volatile organic compounds (VOCs).

Reference | Related Articles | Metrics
Genetic analysis and QTL mapping of a novel reduced height gene in common wheat (Triticum aestivum L.)
ZHOU Chun-yun, XIONG Hong-chun, LI Yu-ting, GUO Hui-jun, XIE Yong-dun, ZHAO Lin-shu, GU Jiayu, ZHAO Shi-rong, DING Yu-ping, SONG Xi-yun, LIU Lu-xiang
2020, 19 (7): 1721-1730.   DOI: 10.1016/S2095-3119(20)63224-5
Abstract184)      PDF in ScienceDirect      
Low stature in wheat is closely associated with lodging resistance, and this impacts harvest index and grain yield.  The discovery of novel dwarfing or semi-dwarfing genes can have great significance for dwarf wheat breeding.  In this study, we identified an EMS-induced dwarf wheat mutant JE0124 from the elite cultivar Jing411.  JE0124 possesses increased stem strength and a 33% reduction in plant height compared with wild type.  Gibberellic acid (GA) treatment analysis suggested that JE0124 was GA-sensitive.  Analysis of the frequency distribution of plant height in four F2 populations derived from crosses between JE0124 and the relatively taller varieties Nongda 5181 and WT indicated that the dwarfism phenotype was quantitatively inherited.  We used two F2 populations and 312 individuals from the reciprocal cross of Nongda 5181 and JE0124 to map the quantitative trait locus (QTL) for reduced height to a 0.85-cM interval on chromosome 2DL.  The mapping was done by using a combination of 660K SNP array-based bulked segregant analysis (BSA) and genetic linkage analysis, with logarithm of odds (LOD) scores of 5.34 and 5.78, respectively.  Additionally, this QTL accounted for 8.27–8.52% of the variation in the phenotype.  The dwarf mutant JE0124 and the newly discovered dwarfing gene on chromosome 2DL in this study will enrich genetic resources for dwarf wheat breeding.
 
Reference | Related Articles | Metrics
Principles and practices of the photo-thermal adaptability improvement in soybean
ZHANG Li-xin, LIU Wei, Mesfin Tsegaw, XU Xin, QI Yan-ping, Enoch Sapey, LIU Lu-ping, WU Ting-ting, SUN Shi, HAN Tian-fu
2020, 19 (2): 295-310.   DOI: 10.1016/S2095-3119(19)62850-9
Abstract204)      PDF in ScienceDirect      
As a short-day (SD) and thermophilic plant, soybean (Glycine max (L.) Merr.) is sensitive to photo-thermal conditions.  This characteristic severely limits the cultivation range of a given soybean cultivar and affects the performances of agronomic traits such as yield, plant architectures, and seed quality.  Therefore, understanding the mechanism of photo-thermal sensitivity will provide a theoretical basis for soybean improvement.  In this review, we introduce the advances in physiological, genetic, and molecular researches in photoperiodism of soybean, and progress in the improvement of the photo-thermal adaptability.  We also summarize the photo-thermal conditions and characteristics of widely-planted soybean cultivars of major production regions in China.  Furthermore, we proposed a novel concept of ‘ecotyping’ and the strategies for widely-adapted soybean cultivar breeding.  This review provides an important guide for improving the adaptability of soybean.
 
Related Articles | Metrics
Characterization of a Novel Chlorophyll-Deficient Mutant Mt6172 in Wheat
GUO Hui-jun, ZHAO Hong-bing, GU Jia-yu, LI Jun-hui, LIU Qingchang, LIU Lu-xiang
2012, 12 (6): 888-897.   DOI: 10.1016/S1671-2927(00)8611
Abstract1773)      PDF in ScienceDirect      
Identification of new chlorophyll-deficient mutants will provide materials for studying signaling components and pathways between plastid and nucleus. A novel chlorophyll-deficient mutant, named Mt6172, was obtained by spaceflight environment induction. Genetic analysis showed that its inheritance was controlled by nuclear and cytoplamic genes. Leaf color of its self-fertilized progenies was albino, narrow-white striped, or green. Only a few cells with abnormal chloroplasts were observed in albino plants and white section of narrow-white striped plants. These chloroplasts had obvious flaws in inner structure, and granum lamellae was extremely disordered. The narrow-white striped plants were characterized with greenand- narrow-white striped leaves, and the width of stripes between different plants was even, their plant height, number of productive tillers, and 1 000-grain weight were lower than those of the wild type. The narrow-white striped plants and the wild type had significant difference in the value of potential activity of photosystem II at all tested stages. At elongation stage, which was impacted the most seriously, effective quantum yield significantly decreased, whereas the energy for photoprotection and photodamage significantly increased. Under different photosynthetic active radiation conditions, changes of electron transport rate, photochemical dissipation, and effective quantum yield were different, electron transport rate was more impacted than other parameters. Therefore, the leaf morphology and inheritance of mutant Mt6172 was different from the other reported mutants in wheat, and it was a novel mutant of chlorophyll deficiency.
Reference | Related Articles | Metrics