Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
An improved scheme for infectious bursal disease virus genotype classification based on both genome-segments A and B
WANG Yu-long, FAN Lin-jin, JIANG Nan, GAO Li, LI Kai, GAO Yu-long, LIU Chang-jun, CUI Hong-yu, PAN Qing, ZHANG Yan-ping, WANG Xiao-mei, QI Xiao-le
2021, 20 (5): 1372-1381.   DOI: 10.1016/S2095-3119(20)63424-4
Abstract141)      PDF in ScienceDirect      
Infectious bursal disease (IBD) is caused by infectious bursal disease virus (IBDV), which has a genome consisting of two segments of double-stranded linear RNA.  IBDVs have been traditionally divided into four phenotypes based on their pathogenicity and antigenicity, including classic, variant, very virulent, and attenuated IBDV.  With the emergences of divergent molecular characteristics of novel strains produced by continuous mutations and recombination, it is increasingly difficult to define new IBDV strains using the traditional descriptive classification method.  The most common classification scheme for IBDV with segmented genome is based solely on segment A, while the significance of segment B has been largely neglected.  In this study, an improved scheme for IBDV genotype classification based on the molecular characteristics of both VP2 (a viral capsid protein encoded by segment A) and VP1 (an RNA-dependent RNA polymerase protein encoded by segment B) was proposed for the first time.  In this scheme, IBDV was classified into nine genogroups of A and five genogroups of B, respectively; the genogroup A2 was further divided into four lineages.  The commonly used phenotypic classifications of classic, variant, very virulent, and attenuated IBDVs correspond to the A1B1, A2B1, A3B2, and A8B1 genotypes of the proposed classification scheme.  The novel variant IBDVs including the strains identified in this study were classified as belonging to genotype A2dB1.  The flexibility and versatility of this improved classification scheme will allow the unambiguous identification of existing and emerging IBDV strains, which will greatly facilitate molecular epidemiology studies of IBDV.
Reference | Related Articles | Metrics
Analysis of DNA methylation of CD79B in MDV-infected chicken spleen
WANG Lu-lu, ZHAO Chun-fang, LIU Chang-jun, ZHANG Hao, LIAN Ling
2021, 20 (11): 2995-3002.   DOI: 10.1016/S2095-3119(20)63564-X
Abstract146)      PDF in ScienceDirect      
Marek’s disease (MD), an immunosuppressive disease induced by Marek’s disease virus (MDV), provides an ideal model for studying diseases caused by a carcinogenic virus.  CD79B is a B-cell antigen receptor complex-associated protein β-chain precursor which is involved in the activation, proliferation, differentiation of B-cell and the transmission of downstream signals.  This study analyzed CD79B gene mRNA expression and methylation by two schemes #20 (5´ flanking to intron 1) and #27 (intron 2 to intron 3), between MDV-infected tumorous spleens (TS) and non-infected spleens (NS).  Results showed that average methylation levels of CpGs in #20 and #27 were higher in TS than in NS (P<0.05), while, CD79B mRNA expression was lower in TS than in NS (P<0.01).  Six of 40 CpG sites showed significantly (P<0.05) different methylation levels between TS and NS.  Correlation analysis showed that the average methylation level rather than a single site methylation level in #20 affected (P<0.05) mRNA expression.  Collectively, it was found that the change of CD79B gene expression after MDV infection might be partly explained by modification of DNA methylation. 
 
Reference | Related Articles | Metrics
The circulation of unique reassortment strains of infectious bursal disease virus in Pakistan
Altaf HUSSAIN, WU Tian-tian, FAN Lin-jin, WANG Yu-long, Farooq Khalid MUHAMMAD, JIANG Nan, GAO Li, LI Kai, GAO Yu-long, LIU Chang-jun, CUI Hong-yu, PAN Qing, ZHANG Yan-ping, Asim ASLAM, Khan MUTI-UR-REHMAN, Muhammad Imran ARSHAD, Hafiz Muhammad ABDULLAH, WANG Xiao-mei, QI Xiao-le
2020, 19 (7): 1867-1875.   DOI: 10.1016/S2095-3119(20)63183-5
Abstract177)      PDF in ScienceDirect      
Infectious bursal disease (IBD), caused by IBD virus (IBDV), is one of the most devastating and immunosuppressive diseases of the poultry and has been a constraint on the sustainable poultry production around the globe including Pakistan.  While the disease is threatening the poultry industry, the nature of predominant strains of IBDV in Pakistan remained ill-defined.  In this study, an epidemiology survey was conducted in the main chicken-farming regions of Pakistan.  The batch of Pakistan IBDVs genes simultaneously covering both VP1 and VP2 were amplified, sequenced, and analyzed.  The unique segment-reassortant IBDVs (vv-A/Uniq-B), carrying segment A from vvIBDV and segment B from one unique ancestor, were identified as one important type of circulating strains in Pakistan.  The data also discovered the characteristic molecular features of Pakistan IBDVs, which will contribute to scientific vaccine selection and effective prevention of the disease.
Reference | Related Articles | Metrics
Physiological evaluation of nitrogen use efficiency of different apple cultivars under various nitrogen and water supply conditions
WANG Qian, LIU Chang-hai, HUANG Dong, DONG Qing-long, LI Peng-min, Steve van NOCKER, MA Feng-wang
2020, 19 (3): 709-720.   DOI: 10.1016/S2095-3119(19)62848-0
Abstract154)      PDF in ScienceDirect      
Nitrogen (N) deficiency is a common problem for apple (Malus×domestica) production in arid regions of China.  However, N utilization efficiency (NUE) of different apple cultivars grown under low N conditions in arid regions has not been evaluated. In this study, NUE was assessed for one-year-old seedlings of six apple cultivars, Golden Delicious, Qinguan, Jonagold, Honeycrisp, Fuji and Pink Lady, grafted onto Malus hupehensis Rehd. rootstocks.  Four treatments were used, including control water with control N (CWCN), limited water with control N (LWCN), control water with low N (CWLN) and limited water with low N (LWLN).  Our results showed that growth indices such as biomass, plant height and stem diameter, and photosynthetic rate of all cultivars decreased in the order CWCN>CWLN>LWCN>LWLN.  When subjected to LWLN treatment, Qinguan showed better growth and photosynthetic characters than other tested cultivars.  Additionally, Qinguan and Pink Lady had higher NUE, while Honeycrisp and Jonagold had lower NUE, based on the determination of biomass, photosynthetic parameters, chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm), 15N and N contents.
 
Reference | Related Articles | Metrics
Impacts of the COVID-19 pandemic on the dairy industry: Lessons from China and the United States and policy implications
Qingbin WANG, LIU Chang-quan, ZHAO Yuan-feng, Anthony KITSOS, Mark CANNELLA, WANG Shu-kun, HAN Lei
2020, 19 (12): 2903-2915.   DOI: 10.1016/S2095-3119(20)63443-8
Abstract172)      PDF in ScienceDirect      
The purposes of this study are to assess the COVID-19 pandemic’s impacts on the dairy industries in China and the United States and to derive policy recommendations for enhancing the diary industries’ resilience to pandemics and other market shocks.  Specifically, data from the two nations are used to analyze and compare the mechanisms through which the pandemic has affected their dairy industries and to discuss potential lessons from their experiences.  The findings suggest that this pandemic has heavily affected the dairy industries in both China and the United States through similar mechanisms, such as decreased farmgate milk prices, disruption and difficulties of moving milk within the supply chains, worker shortages, increased production costs, and lack of operating capital.  There were also significant differences in the affecting mechanisms between the two nations, including transportation difficulties from widespread road closures and significant reduction in holiday sales of dairy products in China, and the shutdown of many dairy processors in the United States due to the closing of schools, restaurants, and hotels.  While government financial reliefs are highly needed to help many dairy farms and processors survive this pandemic in the short term, the dairy industries and governments need to work together to develop long-term strategies and policies to balance the industries’ efficiency and flexibility, product specialization and diversification, supply chain integration and local food systems, and market mechanisms and policy regulations and interventions. 
Reference | Related Articles | Metrics
Knockdown of the Meq gene in Marek’s disease tumor cell line MSB1 might induce cell apoptosis and inhibit cell proliferation and invasion
ZHAO Chun-fang, LI Xin, HAN Bo, QU Lu-jiang, LIU Chang-jun, Jiu Zhou SONG, YANG Ning, LIAN Ling
2020, 19 (11): 2767-2774.   DOI: 10.1016/S2095-3119(20)63321-4
Abstract129)      PDF in ScienceDirect      

Marek’s disease (MD), a highly cell-associated and contagious disease of chickens caused by Marek’s disease virus (MDV) can result in neural lesions, immunosuppression and neoplasia in chicken.  The Meq gene is an important oncogene in the MDV genome, and it is expressed highly in MD tumor tissues and MD T-lymphoblastoid cell lines.  An experiment was conducted to elucidate the role of Meq in MD tumor transformation.  RNA interference technology was used to block its expression, and then analyzed the biological effects of Meq knockdown on the MD tumor cell line MSB1.  A small interfering RNA with an interference efficiency of 70% (P<0.01) was transfected into MSB1 cells to knock down the expression of Meq gene.  The cell proliferation, cycle and apoptosis were detected post-Meq knockdown.  The results showed that MSB1 cell proliferation was downregulated remarkably at 48 h (P<0.01), 60 h (P<0.05) and 72 h (P<0.01) post-Meq knockdown.  The cell cycle was unaffected (P>0.05).  B-cell lymphoma 2 gene (BCL2) was anti-apoptotic and caspase-6 was the effector in the apoptosis pathway.  The activity of caspase-6 was upregulated (P<0.05) significantly and BCL2 gene expression was downregulated (P<0.05) significantly post-Meq knockdown, suggesting cell apoptosis might be induced.  MSB1 cell migration did not exhibit any obvious change (P>0.05) post-Meq knockdown, but the expression of two genes (matrix metalloproteinase 2 (MMP2) and MMP9) that are correlated closely to cell invasion was downregulated (P<0.05) remarkably post-Meq knockdown.  The Meq knockdown might affect the main features of tumorous cells, including proliferation, apoptosis, and invasion, suggesting that the Meq gene might play a crucial role in interfering with lymphomatous cell transformation.

Reference | Related Articles | Metrics
Research advances of SAR remote sensing for agriculture applications: A review
LIU Chang-an, CHEN Zhong-xin, SHAO Yun, CHEN Jin-song, Tuya Hasi, PAN Hai-zhu
2019, 18 (3): 506-525.   DOI: 10.1016/S2095-3119(18)62016-7
Abstract456)      PDF (343KB)(1027)      
Synthetic aperture radar (SAR) is an effective and important technique in monitoring crop and other agricultural targets because its quality does not depend on weather conditions.  SAR is sensitive to the geometrical structures and dielectric properties of the targets and has a certain penetration ability to some agricultural targets.  The capabilities of SAR for agriculture applications can be organized into three main categories: crop identification and crop planting area statistics, crop and cropland parameter extraction, and crop yield estimation.  According to the above concepts, this paper systematically analyses the recent progresses, existing problems and future directions in SAR agricultural remote sensing.  In recent years, with the remarkable progresses in SAR remote sensing systems, the available SAR data sources have been greatly enriched.  The accuracies of the crop classification and parameter extraction by SAR data have been improved progressively.  But the development of modern agriculture has put forwarded higher requirements for SAR remote sensing.  For instance, the spatial resolution and revisiting cycle of the SAR sensors, the accuracy of crop classification, the whole phenological period monitoring of crop growth status, the soil moisture inversion under the condition of high vegetation coverage, the integrations of SAR remote sensing retrieval information with hydrological models and/or crop growth models, and so on, still need to be improved.  In the future, the joint use of optical and SAR remote sensing data, the application of multi-band multi-dimensional SAR, the precise and high efficient modeling of electromagnetic scattering and parameter extraction of crop and farmland composite scene, the development of light and small SAR systems like those onboard unmanned aerial vehicles and their applications will be active research areas in agriculture remote sensing.  This paper concludes that SAR remote sensing has great potential and will play a more significant role in the various fields of agricultural remote sensing. 
Reference | Related Articles | Metrics
Transcriptome analysis reveals the effects of alkali stress on root system architecture and endogenous hormones in apple rootstocks
LIU Xuan, LIANG Wei, LI Yu-xing, LI Ming-jun, MA Bai-quan, LIU Chang-hai, MA Feng-wang, LI Cui-ying
2019, 18 (10): 2264-2271.   DOI: 10.1016/S2095-3119(19)62706-1
Abstract144)      PDF in ScienceDirect      
Soil alkalinity is a major factor that restricts the growth of apple roots. To analyze the response of apple roots to alkali stress, the root structure and endogenous hormones of two apple rootstocks, Malus prunifolia (alkali-tolerant) and Malus hupehensis (alkali-sensitive), were compared. To understand alkali tolerance of M. prunifolia at the molecular level, transcriptome analysis was performed. When plants were cultured in alkaline conditions for 15 d, the root growth of M. hupehensis with weak alkali tolerance decreased significantly. Analysis of endogenous hormone levels showed that the concentrations of indole-3-acetic acid (IAA) and zeatin riboside (ZR) in M. hupehensis under alkali stress were lower than those in the control. However, the trend for IAA and ZR in M. prunifolia was the opposite. The concentration of abscisic acid (ABA) in the roots of the two apple rootstocks under alkali stress increased, but the concentration of ABA in the roots of M. prunifolia was higher than that in M. hupehensis. The expression of IAA-related genes ARF5, GH3.6, SAUR36, and SAUR32 and the Cytokinin (CTK)-related gene IPT5 in M. prunifolia was higher than those in the control, but the expression of these genes in M. hupehensis was lower than those in the control. The expression of ABA-related genes CIPK1 and AHK1 increased in the two apple rootstocks under alkali stress, but the expression of CIPK1 and AHK1 in M. prunifolia was higher than in M. hupehensis. These results demonstrated that under alkali stress, the increase of IAA, ZR, and ABA in roots and the increase of the expression of related genes promoted the growth of roots and improved the alkali tolerance of apple rootstocks.
Related Articles | Metrics
Comparing successful gene knock-in efficiencies of CRISPR/Cas9 with ZFNs and TALENs gene editing systems in bovine and dairy goat fetal fibroblasts
LIU Hui, LIU Chang, ZHAO Yu-hang, HAN Xue-jie, ZHOU Zheng-wei, WANG Chen, LI Rong-feng, LI Xue-ling
2018, 17 (2): 406-414.   DOI: 10.1016/S2095-3119(17)61748-9
Abstract762)      PDF in ScienceDirect      
This study aimed to compare the efficiencies of clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas9-mediated gene knock-ins with zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) in bovine and dairy goat fetal fibroblasts.  To test the knock-in efficiency, a set of ZFNs and CRISPR/Cas9 plasmids were designed to edit the bovine myostatin (MSTN) gene at exon 2, while a set of TALENs and CRISPR/Cas9 plasmids were designed for editing the dairy goat β-casein gene at exon 2.  Donor plasmids utilizing the ZFNs, TALENs, and CRISPR/Cas9 cutting sites were constructed in the GFP-PGK-NeoR plasmid background, including a 5´ and 3´ homologous arm flanking the genes humanized Fat-1 (hFat-1) or enhanced green fluorescent protein (eGFP).  Subsequently, the ZFNs, TALENs, or CRISPR/Cas9 and the hFat-1 or eGFP plasmids were co-transfected by electroporation into bovine and dairy goat fetal fibroblasts.  After G418 (Geneticin) selection, single cells were obtained by mouth pipetting, flow cytometry or a cell shove.  The gene knock-in events were screened by PCR across the homologous arms.  The results showed that in bovine fetal fibrobalsts, the efficiencies of ZFNs-mediated eGFP and hFat-1 gene knock-ins were 13.68 and 0%, respectively.  The efficiencies of CRISPR/Cas9-mediated eGFP and hFat-1 gene knock-ins were 77.02 and 79.01%, respectively.  The eGFP gene knock-in efficiency using CRISPR/Cas9 was about 5.6 times higher than when using the ZFNs gene editing system.  Additionally, the hFat-1 gene knock-in was only obtained when using the CRISPR/Cas9 system.  The difference of knock-in efficiencies between the ZFNs and CRISPR/Cas9 systems were extremely significant (P<0.01).  In the dairy goat fetal fibroblasts, the efficiencies of TALENs-mediated eGFP and hFat-1 gene knock-ins were 32.35 and 26.47%, respectively.  The efficiencies of eGFP and hFat-1 gene knock-ins using CRISPR/Cas9 were 70.37 and 74.29%, respectively.  The knock-in efficiencies difference between the TALENs and CRISPR/Cas9 systems were extremely significant (P<0.01).  This study demonstrated that CRISPR/Cas9 was more efficient at gene knock-ins in domesticated animal cells than ZFNs and TALENs.  The CRISPR/Cas9 technology offers a new era of precise gene editing in domesticated animal cell lines. 
Reference | Related Articles | Metrics
Overexpression of the Suaeda salsa SsNHX1 gene confers enhanced salt and drought tolerance to transgenic Zea mays
HUANG Ying, ZHANG Xiao-xia, LI Yi-hong, DING Jian-zhou, DU Han-mei, ZHAO Zhuo, ZHOU Li-na, LIU Chan, GAO Shi-bin, CAO Mo-ju, LU Yan-li, ZHANG Su-zhi
2018, 17 (12): 2612-2623.   DOI: 10.1016/S2095-3119(18)61998-7
Abstract300)      PDF in ScienceDirect      
Maize is one of the most important crops worldwide, but it suffers from salt stress when grown in saline-alkaline soil. There is therefore an urgent need to improve maize salt tolerance and crop yield. In this study, the SsNHX1 gene of Suaeda salsa, which encodes a vacuolar membrane Na+/H+ antiporter, was transformed into the maize inbred line 18-599 by Agrobacterium-mediated transformation. Transgenic maize plants overexpressing the SsNHX1 gene showed less growth retardation when treated with an increasing NaCl gradient of up to 1%, indicating enhanced salt tolerance. The improved salt tolerance of transgenic plants was also demonstrated by a significantly elevated seed germination rate (79%) and a reduction in seminal root length inhibition. Moreover, transgenic plants under salt stress exhibited less physiological damage. SsNHX1-overexpressing transgenic maize accumulated more Na+ and K+ than wild-type (WT) plants particularly in the leaves, resulting in a higher ratio of K+/Na+ in the leaves under salt stress. This result revealed that the improved salt tolerance of SsNHX1-overexpressing transgenic maize plants was likely attributed to SsNHX1-mediated localization of Na+ to vacuoles and subsequent maintenance of the cytosolic ionic balance. In addition, SsNHX1 overexpression also improved the drought tolerance of the transgenic maize plants, as rehydrated transgenic plants were restored to normal growth while WT plants did not grow normally after dehydration treatment. Therefore, based on our engineering approach, SsNHX1 represents a promising candidate gene for improving the salt and drought tolerance of maize and other crops.
Reference | Related Articles | Metrics
A simple way to visualize detailed phylogenetic tree of huge genomewide SNP data constructed by SNPhylo
YANG Hai-long, DONG Le, WANG Hui, LIU Chang-lin, LIU Fang, XIE Chuan-xiao
2018, 17 (09): 1972-1978.   DOI: 10.1016/S2095-3119(18)62023-4
Abstract610)      PDF (10046KB)(470)      
Phylogenetic trees based on genome-wide single nucleotide polymorphisms (SNPs) among diverse inbreds could provide valuable and intuitive information for breeding and germplasm management in crops.  As a result of sequencing technology developments, a huge amount of whole genome SNP data have become available and affordable for breeders.  However, it is a challenge to perform quick and reliable plotting based on the huge amount of SNP data.  To meet this goal, a visualization pipeline was developed and demonstrated based on publicly available SNP data from the current important maize inbred lines, including temperate, tropical, sweetcorn, and popcorn.  The detailed phylogenetic tree plotted by our pipeline revealed the authentic genetic diversity of these inbreds, which was consistent with several previous reports and indicated that this straightforward pipeline is reliable and could potentially speed up advances in crop breeding.
 
Reference | Related Articles | Metrics
Transcriptomic responses to aluminum (Al) stress in maize
XU Li-ming, LIU Chan, CUI Bao-ming, WANG Ning, ZHAO Zhuo, ZHOU Li-na, HUANG Kai-feng, DING Jian-zhou, DU Han-mei, JIANG Wei, ZHANG Su-zhi
2018, 17 (09): 1946-1958.   DOI: 10.1016/S2095-3119(17)61832-X
Abstract485)      PDF in ScienceDirect      
Aluminum (Al) toxicity is a major factor limiting crop production and plant growth in acid soils.  The complex inheritance of Al toxicity and tolerance mechanisms in maize has uncharacterized yet.  In this study, the maize inbred line 178 seedlings were treated with 200 μmol L–1 CaCl2+0 μmol L–1 AlCl3 (control) and 200 μmol L–1 CaCl2+60 μmol L–1 AlCl3 (Al treatment) for 1 and 6 h, respectively.  The experiment was repeated three times.  Then a detailed temporal analysis of root gene expression was performed using an Agilent GeneChip with 34 715 genes, only the genes showing more than 2.0-fold difference (P<0.01) between the control and the Al treatment maize seedlings were analyzed further.  Thus, a total of 832 different expression genes, 689 significantly up-regulated and 143 down-regulated, were identified after the seedlings were treated with Al for 6 h.  And 60 genes, 59 up-regulated and one down-regulated, were also detected after the seedlings were treated for 1 h.  Replicated transcriptome analyses further showed that about 61% of total significantly genes could be annotated based on plant genome resources.  Quantitative real-time PCR (qRT-PCT) of some selected candidate genes was used to demonstrate the microarray data, indicating significant differences between the control and Al-treated seedlings.  Exposure to Al for 6 h triggered changes in the transcript levels for several genes, which were primarily related to cell wall structure and metabolism, oxidative stress response, membrane transporters, organic acid metabolism, signaling and hormones, and transcription factors, etc.  After Al-treated for 1 h, differential abundance of transcripts for several transporters, kinase, and transcription factors were specifically induced.  In this study, the diversity of the putative functions of these genes indicates that Al stress for a short stage induced a complex transcriptome changes in maize.  These results would further help us to understand rapid and early mechanisms of Al toxicity and tolerance in maize regulated at the transcriptional level.
 
Reference | Related Articles | Metrics
Genetic behavior of Triticum aestivum–Dasypyrum villosum translocation chromosomes T6V#4S·6DL and T6V#2S·6AL carrying powdery mildew resistance
LIU Chang, YE Xing-guo, WANG Mei-jiao, LI Shi-jin, LIN Zhi-shan
2017, 16 (10): 2136-2144.   DOI: 10.1016/S2095-3119(16)61568-X
Abstract628)      PDF in ScienceDirect      
T6V#2S·6AL and T6V#4S·6DL translocation chromosomes developed from the cross of wheat and different Dasypyrum villosum accessions have good powdery mildew (PM) resistance, but their pairing and pyramiding behavior remains unclear.  Results in this study indicated that the pairing frequency rate of the two differently originated 6VS chromosomes in their F1 hybrid was 18.9% according to genomic in situ hybridization (GISH); the PM resistance plants in the F2 generation from the cross between T6V#4S·6DL translocation line Pm97033 and its PM susceptible wheat variety Wan7107 was fewer than expected.  However, the ratio of the resistant vs. the susceptible plants of 15:1 in the F2 generation derived from the cross between the two translocation lines of T6V#2S·6AL and T6V#4S·6DL fitted well.  Plants segregation ratio (homozygous:heterozygous:lacking) revealed by molecular marker for T6V#4S·6DL or T6V#2S·6AL in their F2 populations fitted the expected values of 1:2:1 well, inferring that the pairing of the two alien chromosome arms facilitates the transmission of T6V#4S·6DL from the F1 to the F2 generation.  A quadrivalent was also observed in 21% of pollen mother cells (PMCs) of homozygote plants containing the two pairs of translocated chromosomes.  The chromosome pairing between 6V#2S and 6V#4S indicates that it will be possible to obtain recombinants and clarify if the PM resistance determinant on one alien chromosome arm is different from that on the other.  
Reference | Related Articles | Metrics
Effects of Neutral Detergent Soluble Fiber and Sucrose Supplementation on Ruminal Fermentation, Microbial Synthesis, and Populations of Ruminal Cellulolytic Bacteria Using the Rumen Simulation Technique (RUSITEC)
ZHAO Xiang-hui, LIU Chan-juan, LI Chao-yun , YAO Jun-hu
2013, 12 (8): 1471-1480.   DOI: 10.1016/S1671-2927(00)9061
Abstract1334)      PDF in ScienceDirect      
We evaluated the effects of neutral detergent soluble fiber (NDSF) and sucrose supplementation on ruminal fermentation, microbial synthesis, and populations of ruminal cellulolytic bacteria using the rumen simulation technique (RUSITEC). The experiment had a 2×2 factorial design with two dosages of sucrose, low (ca. 0.26 g d-1, low-sucrose) and high (ca. 1.01 g d-1, high-sucrose), and two dosages of supplied NDSF, low (1.95 g d-1, low-NDSF) and high (2.70 g d-1, high-NDSF). Interactions between NDSF and sucrose were detected for xylanase activity from solid fraction and apparent disappearance of neutral detergent fiber (NDF) and hemicellulose, with the lowest values observed for high-NDSF and high-sucrose treatment. Supplemental NDSF appeared to increase the molar proportion of acetate and reduce that of butyrate; however, the effects of supplemental sucrose on VFA profiles depended upon NDSF amount. There was a NDSF×sucrose interaction for the production of methane. High-NDSF fermenters had lower ammonia-N production, greater daily N flow of solidassociated microbial pellets and total microorganisms, and greater microbial synthesis efficiency compared with low- NDSF fermenters. Supplementation with NDSF resulted in an increase in 16S rDNA copies of Ruminococcus flavefaciens and a reduction in copies of Ruminococcus albus. Supplementation with sucrose tended to increase the 16S rDNA copies of R. albus from liquid fraction, but did not affect daily total microbial N flow and cellulolytic bacterium populations from solid fraction. These data indicate that the effects of the interaction between NDSF and sugars on ruminal fermentation and fiber digestion should be taken into account in diet formulation. Ruminal fermentation and metabolism of sugars warrant further investigation.
Reference | Related Articles | Metrics
Effect of Postharvest UV-C Irradiation on Phenolic Compound Content and Antioxidant Activity of Tomato Fruit During Storage
LIU Chang-hong, CAI Lu-yun, LU Xian-ying, HAN Xiao-xu , YING Tie-jin
2012, 12 (1): 159-165.   DOI: 10.1016/S1671-2927(00)8510
Abstract1786)      PDF in ScienceDirect      
Mature-green tomato fruit (Solanum lycopersicum cv. Zhenfen 202) were exposed to different UV-C irradiation at 2, 4, 8, and 16 kJ m-2 and then stored under the dark at 14°C and 95% relative humidity (RH) for 35 d. Of these four doses, UV-C irradiation at 4 and 8 kJ m-2 significantly increased total phenolic contents in present tomato fruit by 21.2 and 20.2%, respectively. Furthermore, UV-C irradiation at 4 or 8 kJ m-2 promoted the accumulation of total flavonoids and increased the antioxidant activity. 2 or 16 kJ m-2 UV-C irradiation also enhanced antioxidant activity, but to a lesser extent. Seven phenolic compounds, viz., gallic acid, (+)-catechin, chlorogenic acid, cafferic acid, syringic acid, p-coumaric acid, and quercetin in tomato fruit were identified and quantified by HPLC. Gallic acid was the major phenolic compound in tomato fruit and significantly correlated with antioxidant activity. 4 or 8 kJ m-2 UV-C irradiation significantly increased the contents of gallic acid, chlorogenic acid, syringic acid, p-coumaric acid, and quercetin. The optimum dose of UV-C irradiation in terms of increased phenolic compound content and enhanced Antioxidant activity was determined to be 4 or 8 kJ m-2.
Reference | Related Articles | Metrics