Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Long-term straw addition promotes moderately labile phosphorus formation, decreasing phosphorus downward migration and loss in greenhouse vegetable soil
ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TANG Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen
2022, 21 (9): 2734-2749.   DOI: 10.1016/j.jia.2022.07.028
Abstract213)      PDF in ScienceDirect      
Phosphorus (P) leaching is a major problem in greenhouse vegetable production with excessive P fertilizer application.  Substitution of inorganic P fertilizer with organic fertilizer is considered a potential strategy to reduce leaching, but the effect of organic material addition on soil P transformation and leaching loss remains unclear.  The X-ray absorption near-edge structure (XANES) spectroscopy technique can determine P speciation at the molecular level.  Here, we integrated XANES and chemical methods to explore P speciation and transformation in a 10-year field experiment with four treatments: 100% chemical fertilizer (4CN), 50% chemical N and 50% manure N (2CN+2MN), 50% chemical N and 50% straw N (2CN+2SN), and 50% chemical N and 25% manure N plus 25% straw N (2CN+2MSN).  Compared with the 4CN treatment, the organic substitution treatments increased the content of labile P by 13.7–54.2% in the 0–40 cm soil layers, with newberyite and brushite being the main constituents of the labile P.  Organic substitution treatments decreased the stable P content; hydroxyapatite was the main species and showed an increasing trend with increasing soil depth.  Straw addition (2CN+2SN and 2CN+2MSN) resulted in a higher moderately labile P content and a lower labile P content in the subsoil (60–100 cm).  Moreover, straw addition significantly reduced the concentrations and amounts of total P, dissolved inorganic P (DIP), and particulate P in leachate.  DIP was the main form transferred by leaching and co-migrated with dissolved organic carbon.  Partial least squares path modeling revealed that straw addition decreased P leaching by decreasing labile P and increasing moderately labile P in the subsoil.  Overall, straw addition is beneficial for developing sustainable P management strategies due to increasing labile P in the upper soil layer for the utilization of plants, and decreasing P migration and leaching.

Reference | Related Articles | Metrics
Effects of a decade of organic fertilizer substitution on vegetable yield and soil phosphorus pools, phosphatase activities, and the microbial community in a greenhouse vegetable production system
ZHANG Yin-Jie, GAO Wei, LUAN Hao-an, TAND Ji-wei, LI Ruo-nan, LI Ming-Yue, ZHANG Huai-zhi, HUANG Shao-wen
2022, 21 (7): 2119-2133.   DOI: 10.1016/S2095-3119(21)63715-2
Abstract224)      PDF in ScienceDirect      
Partial substitution of chemical fertilizers by organic amendments is adopted widely for promoting the availability of soil phosphorus (P) in agricultural production.  However, few studies have comprehensively evaluated the effects of long-term organic substitution on soil P availability and microbial activity in greenhouse vegetable fields.  A 10-year (2009–2019) field experiment was carried out to investigate the impacts of organic fertilizer substitution on soil P pools, phosphatase activities and the microbial community, and identify factors that regulate these soil P transformation characteristics.  Four treatments included 100% chemical N fertilizer (4CN), 50% substitution of chemical N by manure (2CN+2MN), straw (2CN+2SN), and combined manure with straw (2CN+1MN+1SN).  Compared with the 4CN treatment, organic substitution treatments increased celery and tomato yields by 6.9−13.8% and 8.6−18.1%, respectively, with the highest yields being in the 2CN+1MN+1SN treatment.  After 10 years of fertilization, organic substitution treatments reduced total P and inorganic P accumulation, increased the concentrations of available P, organic P, and microbial biomass P, and promoted phosphatase activities (alkaline and acid phosphomonoesterase, phosphodiesterase, and phytase) and microbial growth in comparison with the 4CN treatment.  Further, organic substitution treatments significantly increased soil C/P, and the partial least squares path model (PLS-PM) revealed that the soil C/P ratio directly and significantly affected phosphatase activities and the microbial biomass and positively influenced soil P pools and vegetable yield.  Partial least squares (PLS) regression demonstrated that arbuscular mycorrhizal fungi positively affected phosphatase activities.  Our results suggest that organic fertilizer substitution can promote soil P transformation and availability.  Combining manure with straw was more effective than applying these materials separately for developing sustainable P management practices. 
Reference | Related Articles | Metrics
The Nutrient Expert decision support system improves nutrient use efficiency and environmental performance of radish in North China
ZHANG Jia-jia, DING Wen-cheng, CUI Rong-zong, LI Ming-yue, Sami ULLAH, HE Ping
2022, 21 (5): 1501-1512.   DOI: 10.1016/S2095-3119(21)63660-2
Abstract144)      PDF in ScienceDirect      
Excessive fertilization has led to nutrient use inefficiency and serious environmental consequences for radish cultivation in North China.  The Nutrient Expert (NE) system is a science-based, site-specific fertilization decision support system, but the updated NE system for radish has rarely been evaluated.  This study aims to validate the feasibility of NE for radish fertilization management from agronomic, economic, and environmental perspectives.  A total of 46 field experiments were conducted over four seasons from April 2018 to November 2019 across the major radish growing regions in North China.  The results indicated that NE significantly reduced N, P2O5, and K2O application rates by 98, 110, and 47 kg ha−1 relative to those in the farmers’ practice (FP), respectively, and reduced N and P2O5 inputs by 48 and 44 kg ha−1, respectively, while maintaining the same K2O rate as soil testing (ST).  Relative to FP and ST, NE significantly increased radish yield by 2.7 and 2.6 t ha−1 (4.2 and 4.0%) and net returns by 837 and 432 USD ha−1, respectively.  On average, NE significantly improved the agronomic efficiency (AE) of N, P, and K (relative to FP and ST) by 42.4 and 31.0, 67.4 kg kg−1 and 50.9, and 20.3 and 12.3 kg kg−1; enhanced the recovery efficiency (RE) of N, P, and K by 11.4 and 7.0, 14.1 and 7.5, and 11.3 and 6.3 percentage points; and increased the partial factor productivity (PFP) of N, P, and K by 162.9 and 96.8, 488.0 and 327.3, and 86.9 and 22.4 kg kg−1, respectively.  Furthermore, NE substantially reduced N and P2O5 surpluses by 105.1 and 115.1 kg ha−1, respectively, and decreased apparent N loss by 110.8 kg ha−1 compared to FP.  These results indicated that the NE system is an effective and feasible approach for improving NUE and promoting cleaner radish production in North China.

Reference | Related Articles | Metrics
Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China
LUAN Hao-an, GAO Wei, TANG Ji-wei, LI Ruo-nan, LI Ming-yue, ZHANG Huai-zhi, CHEN Xin-ping, Dainius MASILIUNAS, HUANG Shao-wen
2020, 19 (10): 2530-2548.   DOI: 10.1016/S2095-3119(20)63269-5
Abstract149)      PDF in ScienceDirect      
Soil aggregation, microbial community, and functions (i.e., extracellular enzyme activities; EEAs) are critical factors affecting soil C dynamics and nutrient cycling.  We assessed soil aggregate distribution, stability, nutrients, and microbial characteristics within >2, 0.25–2, 0.053–0.25, and <0.053 mm aggregates, based on an eight-year field experiment in a greenhouse vegetable field in China.  The field experiment includes four treatments: 100% N fertilizer (CF), 50% substitution of N fertilizer with manure (M), straw (S), and manure plus straw (MS).  The amounts of nutrient (N, P2O5, and K2O) input were equal in each treatment.  Results showed higher values of mean weight diameter in organic-amended soils (M, MS, and S, 2.43–2.97) vs. CF-amended soils (1.99).  Relative to CF treatment, organic amendments had positive effects on nutrient (i.e., available N, P, and soil organic C (SOC)) conditions, microbial (e.g., bacterial and fungal) growth, and EEAs in the >0.053 mm aggregates, but not in the <0.053 mm aggregates.  The 0.25–0.053 mm aggregates exhibited better nutrient conditions and hydrolytic activity, while the <0.053 mm aggregates had poor nutrient conditions and higher oxidative activity among aggregates, per SOC, available N, available P, and a series of enzyme activities.  These results indicated that the 0.25–0.053 mm (<0.053 mm) aggregates provide suitable microhabitats for hydrolytic (oxidative) activity.  Interestingly, we found that hydrolytic and oxidative activities were mainly impacted by fertilization (58.5%, P<0.01) and aggregate fractions (50.5%, P<0.01), respectively.  The hydrolytic and oxidative activities were significantly (P<0.01) associated with nutrients (SOC and available N) and pH, electrical conductivity, respectively.  Furthermore, SOC, available N, and available P closely (P<0.05) affected microbial communities within >0.25, 0.25–0.053, and <0.053 mm aggregates, respectively.  These findings provide several insights into microbial characteristics within aggregates under different fertilization modes in the greenhouse vegetable production system in China.
Reference | Related Articles | Metrics