Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Identification of tolerance to high density and lodging in short petiolate germplasm M657 and the effect of density on yield-related phenotypes of soybean
GAO Hua-wei, YANG Meng-yuan, YAN Long, HU Xian-zhong, HONG Hui-long, ZHANG Xiang, SUN Ru-jian, WANG Hao-rang, WANG Xiao-bo, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
2023, 22 (2): 434-446.   DOI: 10.1016/j.jia.2022.08.047
Abstract257)      PDF in ScienceDirect      

Soybean yield has been increased through high planting density, but investigating plant height and petiole traits to select for compact architecture, lodging resistance, and high yield varieties is an underexplored avenue to improve yield.  We compared the relationship between yield-related traits, lodging resistance, and petiole-associated phenotypes in the short petiole germplasm M657 with three control accessions over 2017-2018 in four locations of the Huang-Huai region.  The results showed M657 exhibited stable and high tolerance to high planting density and resistance to lodging, especially at the highest density (8×105 plants ha-1).  Regression analysis showed that shorter petiole length was significantly associated with increased lodging resistance.  Yield analysis showed that M657 achieved higher yields under higher densities, especially in the north Huang-Huai region.  There are markedly different responses to intra- and inter-row spacing designs among varieties in both lodging and yield related to location and density.  Lodging was positively correlated with planting density, plant height, petiole length, and number of effective branches, and negatively correlated with stem diameter, seed number per plant, and seed weight per plant.  The yield of soybean was increased by appropriately increasing planting density on the basis of current soybean varieties in the Huang-Huai region.  This study provides a valuable new germplasm resource for introgression of compact architecture traits amenable to high yield in high density planting systems and establishes a high-yield model of soybean in the Huang-Huai region.


Reference | Related Articles | Metrics
Characterization of the petiole length in soybean compact architecture mutant M657 and the breeding of new lines
GAO Hua-wei, SUN Ru-jian, YANG Meng-yuan, YAN Long, HU Xian-zhong, FU Guang-hui, HONG Hui-long, GUO Bing-fu, ZHANG Xiang, LIU Li-ke, ZHANG Shu-zhen, QIU Li-juan
2022, 21 (9): 2508-2520.   DOI: 10.1016/j.jia.2022.07.004
Abstract307)      PDF in ScienceDirect      

Phenotypic screening of soybean germplasm suitable for high planting density is currently the most viable strategy to increase yield.  Previous studies have shown that soybean varieties with dwarf features and a short petiole often exhibit a compact plant architecture which could improve yield through increased planting density, although previously reported short petiole accessions were ultimately not usable for breeding in practice.  Here, we established a method to assess petiole length and identified an elite mutant line, M657, that exhibits high photosynthetic efficiency.  The agronomic traits of M657 were evaluated under field conditions, and appeared to be stable for short petiole across seven locations in northern, Huang–Huai, and southern China from 2017 to 2018.  Compared with the Jihuang 13 wild type, the mutant M657 was shorter in both petiole length and plant height, exhibited lower total area of leaf, seed weight per plant and 100-seed weight, but had an increased number of effective branches and the growth period was prolonged by 2–7 days.  Using M657 as a parental line for crosses with four other elite lines, we obtained four lines with desirable plant architecture and yield traits, thus demonstrating the feasibility of adopting M657 in breeding programs for soybean cultivars of high density and high yield.

Reference | Related Articles | Metrics
Comprehensive evaluation of 20 pomegranate (Punica granatum L.) cultivars in China 
CHEN Yan-hui, GAO Hui-fang, WANG Sa, LIU Xian-yan, HU Qing-xia, JIAN Zai-hai, WAN Ran, SONG Jin-hui, SHI Jiang-li
2022, 21 (2): 434-445.   DOI: 10.1016/S2095-3119(20)63389-5
Abstract208)      PDF in ScienceDirect      
Recent investigations on pomegranate products have significantly increased and successfully drawn consumers’ attention to nutritional and medicinal values, promoting the pomegranate industry’s development worldwide.  However, little information on pomegranates grown in China is available.  Morphological and chemical characterizations of fruits and arils from 20 pomegranate cultivars in six regions of China were investigated.  Combined with overall scores by principal component analysis, ‘Yushiliu No. 1’, ‘Taishanhong No. 2’, ‘Tunisia’ and ‘Mollar’ were promising cultivars, and Chinese researchers bred the first two.  It was surprising that ‘Mollar’ had bigger fruit size and more aril moisture grown in China than in Spain.  Cultivars with higher anthocyanin content in arils were ‘Turkey’, ‘Moyu’ and ‘Red Angel’, which might be used as the source of natural red food colourants.  While red husk ‘Hongruyi’ and ‘Hongshuangxi’ with higher vitamin C, aril moisture and lower titratable acid in arils, might also be promising cultivars for further various utilization.  Furthermore, the comparison of ‘Tunisia’ fruits from four regions revealed that cultivation locations had more influence on fruit traits than genotypes.  Maturity index classification was established for Chinese pomegranate cultivars.  Therefore, the results would provide a valuable guide for agricultural cultivation, industrial utilization, and breeding. 
Reference | Related Articles | Metrics
Identification of the genetic locus associated with the crinkled leaf phenotype in a soybean (Glycine max L.) mutant by BSA-Seq technology
OCHAR Kingsley, SU Bo-hong, ZHOU Ming-ming, LIU Zhang-xiong, GAO Hua-wei, SOBHI F. Lamlom, QIU Li-juan
2022, 21 (12): 3524-3539.   DOI: 10.1016/j.jia.2022.08.095
Abstract284)      PDF in ScienceDirect      

The leaf is the main photosynthetic organ of plants, and it plays a significant role in the yield of crop species.  Identifying the causal mutations and candidate genes that underlie leaf phenotypic variation is an important breeding target in soybean grain yield improvement.  An ethyl methyl sulfonate (EMS)-induced soybean mutant DWARFCRINKLEDLEAF1 (DCL1) with an aberrant crinkled leaf phenotype was identified in the background of the soybean cultivar Zhongpin 661 (Zp661).  We constructed an F2 segregating population from a cross between Zp661 and DCL1 in order to investigate the genomic locus associated with the crinkled leaf trait.  Using bulk segregant analysis (BSA) combined with the whole-genome resequencing method, the Euclidean distance (ED) correlation algorithm detected 12 candidate genomic regions with a total length of 20.32 Mb that were linked to the target trait.  Following a comparative analysis of the sequence data for the wild-type and mutant pools, only one single nucleotide mutation (C:G>T:A) located on the first exon of Glyma.19G207100 was found to be associated with the trait.  Candidate gene validation based on a CAPS marker derived from the detected single-nucleotide polymorphism (SNP) indicated a nucleotide polymorphism between the two parents.  Therefore, our findings reveal that Glyma.19G207100, which is renamed as GLYCINE MAX DWARF CRINKLED LEAF 1 (GmDCL1), is a promising candidate gene involved in the morphogenesis of the crinkled leaf trait of the soybean mutant DCL1.  This study provides a basis for the functional validation of this gene, with prospects for soybean breeding targeting grain yield enhancement.

Reference | Related Articles | Metrics
Establishment and application of an accurate identification method for fragrant soybeans
ZHANG Yong-fang, ZHANG Chun-yan, ZHANG Bo, YIN Man, HONG Hui-long, YU Li-li, GAO Hua-wei, GU Yong-zhe, LIU Zhang-xiong, LI Fu-heng, QIU Li-juan
2021, 20 (5): 1193-1203.   DOI: 10.1016/S2095-3119(20)63328-7
Abstract135)      PDF in ScienceDirect      
In order to screen the aroma characteristics of soybean, a new method was established which can quickly quantify the content of 2-acetyl-1pyrroline (2-AP), an important compound related to soybean aroma, using gas chromatography-mass spectrometry (GC-MS).  Based on peak profile, total peak area and retention time as test indexes, an accurate identification method for fragrant soybeans was established.  The optimum parameters of the protocol consisted of column temperature 70°C, sample injector temperature 180°C, optimum extraction alcohol content 1 mL, NaCl content 0.1 g, ultrasonication time 10 min, and extraction time 1 h, which were established by using the orthogonal test of single factors and three factors with four levels (L9(3)4).  2-AP content of leaves had significant correlations with seeds, which were easier to measure.  The protocol was simple and easy to carry out, consumed only small amounts of reagents, and provided accurate and reliable results with good reproducibility.  A total of 101 soybean genotypes from different geographical sources were analyzed using this protocol.  The results showed that the average content of 2-AP was 0.29 mg L–1, ranging from 0.094 to 1.816 mg L–1, and the genetic diversity index was 0.54.  Among all genotypes-tested, they were classified into three grades, including seven elite genotypes identified as “grade one fragrant soybeans”, which were Zhonglong 608, Heinong 88, Ha13-2958, Hongmiandou, Heinong 82, Huangmaodou, and Jiyu 21.  These results provide both an identification technique and several elite aroma genotypes for gene discovery and good quality breeding in soybean.
 
Reference | Related Articles | Metrics
Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice
HU Qun, JIANG Wei-qin, QIU Shi, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, LIU Guo-dong, GAO Hui, ZHANG Hong-cheng, WEI Hai-yan
2020, 19 (5): 1197-1214.   DOI: 10.1016/S2095-3119(19)62800-5
Abstract105)      PDF in ScienceDirect      
Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting.  However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice.  Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production.  Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row (K, average row spacing of 30 cm); equidistant row (D, 33 cm×12 cm); and mechanical carpet-seedling transplanting (T, 30 cm×12.4 cm).  In addition, five different density treatments were set in K (K1–K5, from 18.62×104 to 28.49×104 hills ha–1).  The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha–1 in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend.  Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage.  With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased.  Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality.  These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×104 hills ha–1 and may be an alternative approach to improving grain yield and quality for japonica rice.
Reference | Related Articles | Metrics
Comparative analysis on grain quality and yield of different panicle weight indica-japonica hybrid rice (Oryza sativa L.) cultivars
BIAN Jin-long, REN Gao-lei, HAN Chao, XU Fang-fu, QIU Shi, TANG Jia-hua, ZHANG Hong-cheng, WEI Hai-yan, GAO Hui
2020, 19 (4): 999-1009.   DOI: 10.1016/S2095-3119(19)62798-X
Abstract113)      PDF in ScienceDirect      
Indica-japonica hybrid rice (Oryza sativa L.) cultivars showed high yield potential and poor tasting quality when compared with common japonica rice cultivars.  Large panicle is a prominent factor of high yield for indica-japonica hybrid rice cultivars, and the panicle weight varies greatly among different indica-japonica hybrid rice cultivars.  It is important to research on yield and grain quality of different panicle weight indica-japonica hybrid rice cultivars.  In this study, two different panicle types indica-japonica hybrid cultivars were used to research on the relation of yield and grain quality.  The yields of two heavy panicle weights indica-japonica hybrid cultivars were significantly higher than that of two medium panicle weight rice cultivars.  The cooking and eating quality and starch properties of different panicle type cultivars were evaluated.  Yongyou 6715 (medium panicle) and Yongyou 1852 (heavy panicle) got the relatively higher cooking and eating quality.  Rice cultivars with medium panicle weight had more large starch granules and higher relative crystallinity than cultivars with heavy panicle weight.  Transition temperature and retrogradation enthalpy (ΔHret) of medium panicle type cultivars were significantly higher than that of heavy panicle type cultivars.  There was no significant difference in amylose content among different panicle type cultivars.  Protein content of heavy panicle type cultivar was higher than that of medium panicle type cultivar, and protein content is the main factor affect cooking and eating quality in this study.  The cultivar Yongyou 6715 got the highest taste value with the lowest protein content.  Thus, it is suggested that the emphasis on improving rice cooking and eating quality of indica-japonica hybrid rice cultivars is how to reduce the protein content in rice grain.  According to the results of this study, medium panicle type with high grain weight is the desired panicle type for high quality indica-japonica hybrid rice breeding.
 
Reference | Related Articles | Metrics
A new species of Malus in China, Malus shizongensis Liu sp. nov
LIU Zhen-zhong, LI Zhong-xing, GAO Hua, BAO Cha-na
2020, 19 (10): 2451-2457.   DOI: 10.1016/S2095-3119(20)63282-8
Abstract138)      PDF in ScienceDirect      
Based on morphological, molecular biological, and molecular systematic studies, we describe here a new species of Malus from Yunnan, China.  We compared the morphology of this new species, Malus shizongensis Liu sp. nov, with three Malus species, including M. hupehensis, M. baccata, and M. micromalus.  Although the appearance of M. shizongensis was similar to these three species, it differed in height, branch color, branch hair, and flower color.  To better identify the taxonomy of this new species, genome of M. shizongensis and that of seven Malus species, including M. prunifolia, M. sylvestris, M. sieversii, M. hupehensis, M. baccata, M. robusta, and M. micromalus were analyzed.  A phylogenetic tree based on genome analysis indicated that M. shizongensis was close to M. hupehensis.  Furthermore, M. shizongensis had its species-specific SNPs, and the number of species-specific SNPs was similar to that of three close species (M. hupehensis, M. baccata, and M. micromalus).  Based on the above information, we named this new species as M. shizongensis Liu sp. nov.
Reference | Related Articles | Metrics
miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene  
WENG Bo, RAN Mao-liang, Cao Rong, PENG Fu-zhi, LUO Hui, GAO Hu, TANG Xiang-wei, Yang An-qi, CHEN Bin
2019, 18 (8): 1924-1935.   DOI: 10.1016/S2095-3119(19)62564-5
Abstract160)      PDF in ScienceDirect      
MicroRNAs (miRNAs) have been widely identified in porcine testicular tissues and implicated as crucial regulators of proliferation, apoptosis, and differentiation in porcine spermatogenesis related cells.  However, the function roles of most of the miRNAs that have been identified in Sertoli cells are poorly understood.  In the present study, six experiments were conducted to study the regulatory role of miR-10b in porcine immature Sertoli cells.  In experiment 1, the results showed that the relative mRNA expression level of miR-10b in porcine testicular tissues decreased quadratically (P<0.001) with increasing age, while the relative mRNA expression level of DAZAP1 gene increased (P<0.001).  In addition, the mRNA expression of miR-10b was negatively (P<0.01) correlated with DAZAP1 mRNA expression (r=–0.550).  In experiment 2, the results from the bioinformatic analysis and a luciferase reporter assay demonstrated that miR-10b directly targeted the DAZAP1 gene in porcine immature Sertoli cells.  DAZAP1 mRNA and protein expressions were both regulated (P<0.05) by miR-10b.  In experiments 3 to 5, the over-expression of miR-10b or the siRNA-mediated knockdown of the DAZAP1 gene promoted (P<0.05) porcine immature Sertoli cell proliferation, as determined by the Cell Counting Kit-8 (CCK-8) assay and the 5-Ethynyl-2´-deoxyuridine (EdU) assay.  However, an annexin V-FITC/PI staining assay and the expression of cell survival-related genes indicated that over-expression of miR-10b or knockdown of DAZAP1 had no effect (P>0.05) on porcine immature Sertoli cell apoptosis.  In experiment 6, the co-transfection treatment results showed that miR-10b promoted (P<0.05) porcine immature Sertoli cell proliferation by targeting DAZAP1 gene.  Overall, these experiments demonstrated that miR-10b promotes porcine immature Sertoli cell proliferation by targeting the DAZAP1 gene.
Reference | Related Articles | Metrics
miR-34c inhibits proliferation and enhances apoptosis in immature porcine Sertoli cells by targeting the SMAD7 gene
RAN Mao-liang, WENG Bo, CAO Rong, PENG Fu-zhi, LUO Hui, GAO Hu, CHEN Bin
2019, 18 (2): 449-459.   DOI: 10.1016/S2095-3119(19)62612-2
Abstract245)      PDF (4350KB)(284)      
MicroRNAs (miRNAs) are implicated in swine spermatogenesis via their regulations of cell proliferation, apoptosis, and differentiation.  Recent studies indicated that miR-34c is indispensable in the late steps of spermatogenesis.  However, whether miR-34c plays similar important roles in immature porcine Sertoli cells remain unknown.  In the present study, we conducted two experiments using a completely randomised design to study the function roles of miR-34c.  The results from experiment I demonstrated that the relative expression level of miR-34c in swine testicular tissues increased (P=0.0017) quadratically with increasing age, while the relative expression level of SMAD family member 7 (SMAD7 ) decreased (P=0.0009) with curve.  Furthermore, miR-34c expression levels showed a significant negative correlation (P=0.013) with SMAD7 gene expression levels.  The results from experiment II indicated that miR-34c directly targets the SMAD7 gene using a luciferase reporter assay, and suppresses (P<0.05) SMAD7 mRNA and protein expressions in immature porcine Sertoli cells.  Overexpression of miR-34c inhibited (P<0.05) proliferation and enhanced (P<0.05) apoptosis in the immature porcine Sertoli cells, which was supported by the results from the Cell Counting Kit-8 (CCK-8) assay, the 5-Ethynyl-2´-deoxyuridine (EdU) assay, and the Annexin V-FITC/PI staining assay.  Furthermore, knockdown of SMAD7 via small interfering RNA (siRNA) gave a similar result.  It is concluded that miR-34c inhibits proliferation and enhances apoptosis in immature porcine Sertoli cells by targeting the SMAD7 gene.
Reference | Related Articles | Metrics
Comparison of agronomic performance between inter-sub-specific hybrid and inbred japonica rice under different mechanical transplanting methods
HU Ya-jie, WU Pei, ZHANG Hong-cheng, DAI Qi-gen, HUO Zhong-yang, XU Ke, GAO Hui, WEI Hai-yan, GUO Bao-wei, CUI Pei-yuan
2018, 17 (04): 806-816.   DOI: 10.1016/S2095-3119(17)61819-7
Abstract516)      PDF in ScienceDirect      
Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China.  However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice (IHR) and inbred japonica rice (IJR) under mechanical transplanting method.  In 2013 and 2014, field experiments were conducted using IHR (Yongyou 2640) and IJR (Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted (PS) and carpet seedlings mechanically transplanted (CS).  Grain yield, yield components, leaf area index (LAI), leaf area duration (LAD), aboveground biomass, crop growth rate (CGR), nitrogen (N) uptake, and N accumulation were investigated.  When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity.  Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage.  Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS.  When compared with IJR for both treatments, IHR generated 75.2% more grain yield.  However, the characteristics creating high yield of IHR were different from those of IJR.  Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR.  These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.
Reference | Related Articles | Metrics
Effects of nitrogen level on yield and quality of japonica soft super rice
ZHU Da-wei, ZHANG Hong-cheng, GUO Bao-wei, XU Ke, DAI Qi-gen, WEI Hai-yan, GAO Hui, HU Ya-jie, CUI Pei-yuan, HUO Zhong-yang
2017, 16 (05): 1018-1027.   DOI: 10.1016/S2095-3119(16)61577-0
Abstract1060)      PDF in ScienceDirect      
Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation.  In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two japonica soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5, 225, 262.5, 300, and 337.5 kg ha–1.  With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased.  The highest yield was obtained at 300 kg ha–1.  The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased.  Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality.  These results suggest that nitrogen level significantly affects the yield and rice quality of japonica soft super rice.  We conclude that the suitable nitrogen application rate for japonica soft super rice, NJ 9108 and NJ 5055, is 270 kg ha–1, under which they obtain high yield as well as superior eating/cooking quality.
Reference | Related Articles | Metrics
Effects of marker density and minor allele frequency on genomic prediction for growth traits in Chinese Simmental beef cattle
ZHU Bo, ZHANG Jing-jing, NIU Hong, GUAN Long, GUO Peng, XU Ling-yang, CHEN Yan, ZHANG Lu-pei, GAO Hui-jiang, GAO Xue, LI Jun-ya
2017, 16 (04): 911-920.   DOI: 10.1016/S2095-3119(16)61474-0
Abstract706)      PDF in ScienceDirect      
Genomic selection has been demonstrated as a powerful technology to revolutionize animal breeding.  However, marker density and minor allele frequency can affect the predictive ability of genomic estimated breeding values (GEBVs).  To investigate the impact of marker density and minor allele frequency on predictive ability, we estimated GEBVs by constructing the different subsets of single nucleotide polymorphisms (SNPs) based on varying markers densities and minor allele frequency (MAF) for average daily gain (ADG), live weight (LW) and carcass weight (CW) in 1 059 Chinese Simmental beef cattle.  Two strategies were proposed for SNP selection to construct different marker densities: 1) select evenly-spaced SNPs (Strategy 1), and 2) select SNPs with large effects estimated from BayesB (Strategy 2).  Furthermore, predictive ability was assessed in terms of the correlation between predicted genomic values and corrected phenotypes from 10-fold cross-validation.  Predictive ability for ADG, LW and CW using autosomal SNPs were 0.13±0.002, 0.21±0.003 and 0.25±0.003, respectively.  In our study, the predictive ability increased dramatically as more SNPs were included in analysis until 200K for Strategy 1.  Under Strategy 2, we found the predictive ability slightly increased when marker densities increased from 5K to 20K, which indicated the predictive ability of 20K (3% of 770K) SNPs with large effects was equal to the predictive ability of using all SNPs.  For different MAF bins, we obtained the highest predictive ability for three traits with MAF bin 0.01–0.1.  Our result suggested that designing a low-density chip by selecting low frequency markers with large SNP effects sizes should be helpful for commercial application in Chinese Simmental cattle.
Reference | Related Articles | Metrics
Modified Bfat-1 gene and its biological verification in mice by hydrodynamic tail vein injection
GAO Xue, DU Xin-hua, ZHANG Lu-pei, CHEN Yan, GAO Hui-jiang, XU Shang-zhong, LI Jun-ya
2016, 15 (06): 1330-1337.   DOI: 10.1016/S2095-3119(15)61218-7
Abstract1618)      PDF in ScienceDirect      
  Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are essential components required for normal cellular function and have been shown to have important therapeutic and nutritional benefits in humans. But humans or mammals cannot naturally produce ω-3 PUFAs, due to the lack of the ω-3 fatty acid desaturase gene (fat-1 gene). Previously, fat-1 gene has been cloned from Caenorhabditis elegans and transferred into mice, pigs and sheep, but not yet into beef cattle. We attempt to transfer it into beef cattle. The object of this paper is to edit the fat-1 gene from C. elegans to express more efficiently in beef cattle and verify its biological function in mice model. As a result, the fat-1 gene from C. elegans was modified by synonymous codon usage and named it Bfat-1. We have demonstrated that degree of codon bias of Bfat-1 gene was increased in beef cattle. Moreover, Bfat-1 gene could be transiently expressed in mouse liver and muscle, the ω-6/ω-3 PUFAs ratio of 18 and 20 carbon was decreased significantly in liver (P<0.05), and the ratio of 20 carbon decreased significantly in muscle 24 and 72 h after injection (P<0.05). This confirms that the Bfat-1 gene modification was successful, and the protein encoded was able to catalyze the conversion of ω-6 PUFAs to ω-3 PUFAs.
Reference | Related Articles | Metrics