Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Impacts of household income on beef at-home consumption: Evidence from urban China
ZHU Wen-bo, CHEN Yong-fu, ZHAO Jing, WU Bei-bei
2021, 20 (6): 1701-1715.   DOI: 10.1016/S2095-3119(20)63582-1
Abstract196)      PDF in ScienceDirect      
Beef consumption in China has increased substantially from 5.0 million tons in 2000 to 7.7 million tons in 2019 thanks to rapid income growth, but still remains low compared to pork and poultry consumption.  Improving the understanding about the impacts of household income on beef consumption in China is necessary to forecast future beef demand and inform the domestic beef industry, especially in the context of unprecedented expansion of middle income class in China.  Based on survey data of 32 878 urban households collected by the National Bureau of Statistics of China, we employed the inverse hyperbolic sine (IHS) double-hurdle model to estimate income elasticities of beef demand across different income groups and simulated possible trends of future beef consumption of Chinese urban residents.  The empirical results showed that the unconditional income elasticities of beef consumption at home vary between 0.169 for the low-income group and 0.671 for the high-income group.  The simulated results indicated that beef consumption is expected to increase by 12.0 to 38.8% in 10 years and by 18.6 to 70.5% in 15 years under distinct income growth scenarios.  Our findings provide practical insights for policy makers and other stakeholders about future beef demand, such as potential opportunities embedded in rising beef demand for domestic producers and world beef exporters as well as the urgency of improving the supply chain resilience of beef in China.
Reference | Related Articles | Metrics
Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26
QU Yun-feng, WU Pei-pei, HU Jing-huang, CHEN Yong-xing, SHI Zhan-liang, QIU Dan, LI Ya-hui, ZHANG Hong-jun, ZHOU Yang, YANG Li, LIU Hong-wei, ZHU Tong-quan, LIU Zhi-yong, ZHANG Yan-ming, LI Hong-jie
2020, 19 (4): 931-940.   DOI: 10.1016/S2095-3119(19)62644-4
Abstract122)      PDF in ScienceDirect      
Resistance to powdery mildew is an important trait of interest in many wheat breeding programs.  The information on genes conferring resistance to powdery mildew in wheat cultivars is useful in parental selection.  Winter wheat breeding line DH51302 derived from Liangxing 99 and cultivar Shimai 26 derived from Jimai 22 showed identical infection patterns against 13 isolates of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew.  DH51302 and Shimai 26 were crossed to a powdery mildew susceptible cultivar Zhongzuo 9504 and the F2:3 families were used in molecular localization of the resistance genes.  Fourteen polymorphic markers, which were linked to Pm52 from Liangxing 99, were used to establish the genetic linkage maps for the resistance genes PmDH51302 and PmSM26 in DH51302 and Shimai 26, respectively.  These genes were placed in the same genetic interval where Pm52 resides.  Analysis of gene-linked molecular markers indicated that PmDH51302 and PmSM26 differed from other powdery mildew resistance genes on chromosome arm 2BL, such as Pm6, Pm33, Pm51, MlZec1, MlAB10, and Pm64.  Based on the results of reaction patterns to different Bgt isolates and molecular marker localization, together with the pedigree information, DH51302 and Shimai 26 carried the same gene, Pm52, which confers their resistance to powdery mildew.
 
Reference | Related Articles | Metrics
A joint use of emergy evaluation, carbon footprint and economic analysis for sustainability assessment of grain system in China during 2000–2015
WANG Xiao-long, WANG Wei, GUAN Yue-shan, XIAN Yuan-ran, HUANG Zhi-xin, FENG Hai-yi, CHEN Yong
2018, 17 (12): 2822-2835.   DOI: 10.1016/S2095-3119(18)61928-8
Abstract251)      PDF in ScienceDirect      
The rapid growth of grain yield in China accelerates a discussion on whether the grain system in China is sustainable.  To answer the question, a comprehensive assessment from economic and environmental points is necessary.  This study jointly used economic analysis (ECA), emergy evaluation (EME) and carbon footprint (CF) to analyze the environmental and economic sustainability of the grain production system in China based on the national statistical data during 2000–2015.  Results showed that the costs of maize, wheat, rice and soybean had increased by 252−346% from 2000 to 2015, causing the lower profit of grain system in recent years.  The situation resulted in a serious problem on economic sustainability of grain system in China.  Meanwhile, the emergy sustainability index (ESI) of maize, wheat, rice and soybean systems were increasing during 2000–2015, and the CF on unit yield of the crops had been reduced by 10−30% in the study period.  The results reflected the improved environmental sustainability of grain system in China during 2000–2015.  Nevertheless, the emergy flow of industrial inputs for the crops were increased by 4−22% in the study period, and the CF from the inputs presented a growth rate of 16−23% as well during the same period.  The results implied that the grain system in China was relying more on fossil-based inputs.  Finally, according to the key points of cost, emergy and CF, we suggest that improving labor efficiency, advanced agricultural practices and optimizing cropping pattern will be effective ways to further improve the economic and environmental sustainability of grain system in China.  
Reference | Related Articles | Metrics
Molecular mapping of YrTZ2, a stripe rust resistance gene in wild emmer accession TZ-2 and its comparative analyses with Aegilops tauschii
WANG Zhen-zhong, XIE Jing-zhong, GUO Li, ZHANG De-yun, LI Gen-qiao, FANG Ti-lin, CHEN Yongxing, LI Jun, WU Qiu-hong, LU Ping, LI Miao-miao, WU Hai-bin, ZHANG Huai-zhi, ZHANG Yan, YANG Wu-yun, LUO Ming
2018, 17 (06): 1267-1275.   DOI: 10.1016/S2095-3119(17)61846-X
Abstract475)      PDF in ScienceDirect      
Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating disease that can cause severe yield losses.  Identification and utilization of stripe rust resistance genes are essential for effective breeding against the disease.  Wild emmer accession TZ-2, originally collected from Mount Hermon, Israel, confers near-immunity resistance against several prevailing Pst races in China.  A set of 200 F6:7 recombinant inbred lines (RILs) derived from a cross between susceptible durum wheat cultivar Langdon and TZ-2 was used for stripe rust evaluation.  Genetic analysis indicated that the stripe rust resistance of TZ-2 to Pst race CYR34 was controlled by a single dominant gene, temporarily designated YrTZ2.  Through bulked segregant analysis (BSA) with SSR markers, YrTZ2 was located on chromosome arm 1BS flanked by Xwmc230 and Xgwm413 with genetic distance of 0.8 cM (distal) and 0.3 cM (proximal), respectively.  By applying wheat 90K iSelect SNP genotyping assay, 11 polymorphic loci (consisting of 250 SNP markers) closely linked to YrTZ2 were identified.  YrTZ2 was further delimited into a 0.8-cM genetic interval between SNP marker IWB19368 and SSR marker Xgwm413, and co-segregated with SNP marker IWB28744 (co-segregated with 28 SNP).  Comparative genomics analyses revealed high level of collinearity between the YrTZ2 genomic region and the orthologous region of Aegilops tauschii 1DS.  The genomic region between loci IWB19368 and IWB31649 harboring YrTZ2 is orthologous to a 24.5-Mb genomic region between AT1D0112 and AT1D0150, spanning 15 contigs on chromosome 1DS.  The genetic and comparative maps of YrTZ2 provide a framework for map-based cloning and marker-assisted selection of YrTZ2.
 
Reference | Related Articles | Metrics
Fine mapping of powdery mildew resistance gene PmTm4 in wheat using comparative genomics
XIE Jing-zhong, WANG Li-li, WANG Yong, ZHANG Huai-zhi, ZHOU Sheng-hui, WU Qiu-hong, CHEN Yong-xing, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, ZHANG Yan, HU Tie-zhu, LIU Zhi-yong
2017, 16 (03): 540-550.   DOI: 10.1016/S2095-3119(16)61377-1
Abstract1388)      PDF in ScienceDirect      
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most severe wheat diseases.  Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease.  Genetic analysis revealed that a single dominant resistance gene named PmTm4 originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of B. graminis f. sp. tritici isolate E09.  Detailed comparative genomics analyses helped to develop closely linked markers to PmTm4 and a fine genetic map was constructed using large F2 population, in which PmTm4 was located into a 0.66-cM genetic interval.  The orthologous subgenome region of PmTm4 in Aegilops tauschii was identified, and two resistance gene analogs (RGA) were characterized from the corresponding sequence scaffolds of Ae. tauschii draft assembly.  The closely linked markers and identified Ae. tauschii orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of PmTm4.
Reference | Related Articles | Metrics
QTL mapping revealed TaVp-1A conferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6
ZHOU Sheng-hui, FU Lin, WU Qiu-hong, CHEN Jiao-jiao, CHEN Yong-xing, XIE Jing-zhong, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, LIANG Yong, ZHANG Yan, OU Ming-shan, LIANG Rong-qi, HAN Jun, LIU Zhi-yong
2017, 16 (02): 435-444.   DOI: 10.1016/S2095-3119(16)61361-8
Abstract1241)      PDF in ScienceDirect      
Pre-harvest sprouting (PHS) occurs frequently in most of the wheat cultivation area worldwide, which severely reduces yield and end-use quality, resulting in substantial economic loss.  In this study, quantitative trait loci (QTL) for PHS resistance were mapped using an available high-density single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) genetic linkage map developed from a 269 recombinant inbred lines (RILs) population of Yanda 1817×Beinong 6.  Using phenotypic data on two locations (Beijing and Shijiazhuang, China) in two years (2012 and 2013 harvesting seasons), five QTLs, designated as QPhs.cau-3A.1, QPhs.cau-3A.2, QPhs.cau-5B, QPhs.cau-4A, and QPhs.cau-6A, for PHS (GP) were detected by inclusive composite interval mapping (ICIM) (LOD≥2.5).  Two major QTLs, QPhs.cau-3A.2 and QPhs.cau-5B, were mapped on 3AL and 5BS chromosome arms, explaining 6.29–21.65% and 4.36–5.94% of the phenotypic variance, respectively.  Precise mapping and comparative genomic analysis revealed that the TaVp-1A flanking region on 3AL is responsible for QPhs.cau-3A.2.  SNP markers flanking QPhs.cau-3A.2 genomic region were developed and could be used for introgression of PHS tolerance into high yielding wheat varieties through marker-assisted selection (MAS).
Reference | Related Articles | Metrics
Heterotic loci identified for plant height and ear height using two CSSLs test populations in maize
WANG Hong-qiu, ZHANG Xiang-ge, YANG Hui-li, CHEN Yong-qiang, YUAN Liang, LI Wei-hua, LIU Zong-hua, TANG Ji-hua, KANG Ding-ming
2016, 15 (12): 2726-2735.   DOI: 10.1016/S2095-3119(16)61376-X
Abstract1066)      PDF in ScienceDirect      
     Heterosis is an important biological phenomenon, and it has been used to increase grain yield, quality and resistance to abiotic and biotic stresses in many crops. However, the genetic mechanism of heterosis remains unclear up to now. In this study, a set of 184 chromosome segment substitution lines (CSSLs) population, which derived from two inbred lines lx9801 (the recurrent parent) and Chang 72 (the donor parent), were used as basal material to construct two test populations with the inbred lines Zheng 58 and Xun 9058. The two test populations were evaluated in two locations over two years, and the heterotic loci for plant height and ear height were identified by comparing the performance of each test hybrid with the corresponding CK at P<0.05 significant level using one-way ANOVA analysis and Duncan’s multiple comparisons. There were 24 and 29 different heterotic loci (HL) identified for plant height and ear height in the two populations at two locations over two years. Three HL (hlPH4a, hlPH7c, hlPH1b) for plant height and three (hlEH1d, hlEH6b, hlEH1b) for ear height were identified in the CSSLs×Zheng 58 and CSSLs×Xun 9058 populations as contributing highly to heterosis performance of plant height and ear height across four environments. Among the 29 HL identified for ear height, 12 HL (41.4%) shared the same chromosomal region associated with the HL (50.0%) identified for plant height in the same test population and environment.
Reference | Related Articles | Metrics
In vitro establishment of a highly effective method of castor bean (Ricinus communis L.) regeneration using shoot explants
ZHANG Ji-xing, WANG Xiao-yu, FENG Zi-zhou, GENG Xue-jun, MU Sha-moli, HUO Hong-yan, TONG Huan, LI Meng-zhu, LI Yi, CHI Yue, CHEN Yong-sheng
2016, 15 (06): 1417-1422.   DOI: 10.1016/S1671-2927(00)10558
Abstract1089)      PDF in ScienceDirect      
An efficient plant regeneration protocol was established for castor bean (Ricinus communis L.), in which 0.3 mg L–1 thidiazuron (TDZ) induced shoot clusters and increased the number of adventitious shoots from hypocotyl tissue. Our results showed that treatment under dark conditions significantly promoted the average number of shoots per explant to 37.36±4.54 (with a 6-d treatment). Modified 1/2 Murashige and Skoog (MS) basal medium supplemented with 440 mg L–1 Ca2+, 0.2 mg L–1 gibberellic acid and 0.1 mg L–1 TDZ significantly increased shoot elongation rates and lowered vitrification rates. Furthermore, 1/2 MS media supplemented with 0.2 mg L–1 1-naphthaleneacetic acid induced a higher rooting rate compared with other culture conditions.
Reference | Related Articles | Metrics
Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL
ZHANG Dong, OUYANG Shu-hong, WANG Li-li, CUI Yu, WU Qiu-hong, LIANG Yong, WANG Zhen-zhong, XIE Jing-zhong, ZHANG De-yun, WANG Yong, CHEN Yong-xing, LIU Zhi-yong
2015, 14 (4): 603-609.   DOI: 10.1016/S2095-3119(14)60774-7
Abstract1674)      PDF in ScienceDirect      
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was controlled by a single dominant gene, temporarily designated MlWE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of MlWE4 was constructed, and MlWE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes MlWE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or alleles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of MlWE4, Pm36 and Ml3D232.
Reference | Related Articles | Metrics
Agricultural Policy, Climate Factors and Grain Output: Evidence From Household Survey Data in Rural China
CHEN Yong-fu, WU Zhi-gang, ZHU Tie-hui, YANG Lei, MA Guo-ying, Chien Hsiao-ping
2013, 12 (1): 169-183.   DOI: 10.1016/S2095-3119(13)60217-8
Abstract1417)      PDF in ScienceDirect      
This paper estimates a stochastic frontier function using a panel data set that includes 4 961 farmer households for the period of 2005-2009 to decompose the growth of grain production and the total factor productivity (TFP) growth at the farmer level. The empirical results show that the major contributor to the grain output growth for farmers is input growth and that its average contribution accounts for 60.92% of farmer’s grain production growth in the period of 2006-2009, whereas the average contributions sourced from TFP growth and residuals are only 17.30 and 21.78%, respectively. The growth of intermediate inputs is a top contributor with an average contribution of 44.46%, followed by the planted area (18.16%), investment in fixed assets (1.05%), and labor input (-2.75%), indicating that the contribution from the farmer’s input growth is mainly due to the growth of intermediate inputs and that the decline in labor inputs has become an obstacle for farmers in seeking grain output growth. Among the elements consisting of TFP growth, the contribution of technical progress is the largest (32.04%), followed by grain subsidies (8.55%), the average monthly temperature (4.26%), the average monthly precipitation (-0.88%), the adjusted scale effect (-5.66%), and growth in technical efficiency (-21.01%). In general, the contribution of climate factors and agricultural policy factor are positive and significant.
Reference | Related Articles | Metrics