The soybean rhizosphere has a specific microbial community, but the differences in microbial community structure between different soybean genotypes have not been explained. The present study analyzed the structure of the rhizosphere microbial community in three soybean genotypes. Differences in rhizosphere microbial communities between different soybean genotypes were verified using diversity testing and community composition, and each genotype had a specific rhizosphere microbial community composition. Co-occurrence network analysis found that different genotype plant hosts had different rhizosphere microbial networks. The relationship between rhizobia and rhizosphere microorganisms in the network also exhibited significant differences between different genotype plant hosts. The ecological function prediction found that different genotypes of soybean recruited the specific rhizosphere microbial community. These results demonstrated that soybean genotype regulated rhizosphere microbial community structure differences. The study provides a reference and theoretical support for developing soybean microbial inoculum in the future.
In agricultural production, temperature and moisture are important factors affecting grain yield and quality. Although moderate drought at the grain-filling stage can effectively alleviate the damage caused by high temperature, the specific regulatory mechanism driving the effect of moderate drought at the high temperature on starch synthesis is still unclear. To explore the effects and mechanisms of high temperature and moderate drought on rice starch synthesis at the grain-filling stage, the activities of enzymes and expression levels of the genes involved in starch synthesis under four different treatments involving high temperature and/or water stress (CK, HT, WS, and HT+WS) were investigated in this study. The starch synthesis of a japonica inbred rice was measured under the four treatments during the grain filling. The results show that the effects of high temperature and moderate drought on grain filling mainly occur in the inferior grains of rice. Through the regulation of enzymes involved in starch synthesis and the expression levels of their main genes, the synthesis of rice starch can be affected. Therefore, the high temperature and moderate drought were antagonistic, and moderate drought can alleviate the damage to grain quality at a high temperature by improving the starch synthesis of inferior grains in japonica rice. This study provides a basis for stress-resistance cultivation and breeding strategies of rice with high temperature tolerance.