Please wait a minute...
Journal of Integrative Agriculture  2026, Vol. 25 Issue (3): 1074-1086    DOI: 10.1016/j.jia.2025.04.034
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Screening and evaluation of plant-derived attractants for Loxostege sticticalis adult management

Hongnian Li1, 2*, Ertao Li2*, Aiguo Kang3, Kebin Li2, Lei Zhang2, Huanhuan Dong2, Zhimin Wang2, Yangyang Wang3, Byambasuren Mijidsuren4, Fei Hu1, Jiao Yin2#, Zhaojun Wei1#

1 School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China

2 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

3 Plant Protection Station of Kangbao County in Hebei Province, Kangbao 076650, China

4 Plant Protection Research Institute of Mongolia, Ulaanbaatar 210153, Mongolia

 Highlights 
Linalool, cis-anethole, trans-2-hexenal, and 1-octen-3-ol are attractants for L. sticticalis.
Four compounds mixed at a ratio of 5:1:1:10 are recommended for managing L. sticticalis.
The lure equipment with mixtures can be integrated into the “push–pull” strategy.

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

草地螟(鳞翅目:螟蛾科)是亚欧地区农牧业生产中的重要迁飞性害虫。利用植物挥发性有机化合物(pVOCs)作为引诱剂进行害虫监测与防控,是一种环境友好且高效的防治策略。然而,目前针对草地螟的pVOCs防控研究仍较为有限。本研究采用动态顶空采样技术,收集了草地螟雌虫偏好产卵的三种寄主植物(灰绿藜、狗尾草和紫花苜蓿)释放的挥发性物质,通过气质联用技术(GC-MS)鉴定出55种化合物,其中16种化合物在0.001-100 µg µL-1浓度范围内可引起草地螟成虫的电生理反应。进一步的室内行为学实验证实,芳樟醇、顺式茴香醇、反式-2-己烯醛和1-辛烯-3-醇这4种生物活性化合物对草地螟具有显著引诱效果,特别是当以5:1:5:1025号配方)和5:1:1:1021号配方)比例复配时,对成虫的引诱作用最为显著。田间试验结果显示,装载21号配方的2号诱捕器表现出最佳的田间诱捕效果。本研究证实,基于pVOCs的引诱剂可有效应用于草地螟成虫的监测和防控,为开发新型植物源引诱剂提供了重要思路。



Abstract  

The Loxostege sticticalis (Lepidoptera: Pyralidae) is a major migratory pest of agriculture and animal husbandry in Asia and Europe.  Utilizing plant volatile organic compounds (pVOCs) as attractants for monitoring and controlling pests is considered an environmentally friendly and effective method.  However, limited knowledge exists regarding applying pVOCs to manage Lsticticalis.  Here, volatile compounds released by Chenopodium album, Setaria viridis, and Medicago sativa, the three preferred oviposition plants for Lsticticalis females, were collected using dynamic headspace sampling techniques.  A total of 55 distinct compounds were identified through gas chromatography-mass spectrometry (GC-MS), and 16 compounds in the concentration range from 0.001 to 100 µg µL–1 elicited consistently enhanced electrophysiological responses in both male and female Lsticticalis.  Subsequently, the attraction potential of four bioactive compounds - linalool, cis-anethole, trans-2-hexenal, and 1-octen-3-ol - were further confirmed by indoor behavioral bioassays.  The blends of linalool, cis-anethole, trans-2-hexenal, and 1-octen-3-ol mixed at ratios of 5:1:5:10 (formulation No. 25) and 5:1:1:10 (formulation No. 21) were highly attractive to Lsticticalis adults.  Field-trapping assays indicated that lure No. 2 baited with formulation 21 demonstrated superior efficacy in field trapping.  These findings suggest that pVOC-based attractants can be effectively employed for monitoring and mass trapping Lsticticalis adults, providing insights into the development of botanical attractants.

Keywords:  Loxostege sticticalis       plant volatile        gas chromatography-mass spectrometry (GC-MS)        electrophysiological response        behavioral bioassay  
Received: 06 January 2025   Accepted: 25 March 2025 Online: 25 April 2025  
Fund: 

This work was supported by the National Key R&D Program of China (2024YFE0113000), the Natural Science Foundation of Ningxia Province, China (2022AAC03241), and the China Postdoctoral Science Foundation (2024M753573).

About author:  Hongnian Li, E-mail: lihntomato@163.com; Ertao Li, E-mail: 18330247086@163.com; #Correspondence Jiao Yin, E-mail: jyin@ippcaas.cn; Zhaojun Wei, E-mail: zjwei@hfut.edu.cn * These authors contributed equally to this study.

Cite this article: 

Hongnian Li, Ertao Li, Aiguo Kang, Kebin Li, Lei Zhang, Huanhuan Dong, Zhimin Wang, Yangyang Wang, Byambasuren Mijidsuren, Fei Hu, Jiao Yin, Zhaojun Wei. 2026. Screening and evaluation of plant-derived attractants for Loxostege sticticalis adult management. Journal of Integrative Agriculture, 25(3): 1074-1086.

Ando T, Inomata S, Yamamoto M. 2004. Lepidopteran sex pheromones. Topics in Current Chemistry239, 51–96.

Arimura G I, Uemura T. 2025. Cracking the plant VOC sensing code and its practical applications. Trends in Plant Science30, 105–115.

Bai P H, Wang H M, Liu B S, Li M, Liu B M, Gu X S, Tang R. 2020. Botanical volatiles selection in mediating electrophysiological responses and reproductive behaviors for the fall webworm moth Hyphantria cuneaFrontiers in Physiology, 11, 486.

Barros-Parada W, Ammagarahalli B, Basoalto E, Fuentes-Contreras E, Gemeno C. 2018. Captures of oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae), in traps baited with host-plant volatiles in Chile. Applied Entomology and Zoology53, 193–204.

Borrero-Echeverry F, Becher P G, Birgersson G, Bengtsson M, Witzgall P, Saveer A M. 2015. Flight attraction of Spodoptera littoralis (Lepidoptera, Noctuidae) to cotton headspace and synthetic volatile blends. Frontiers in Ecology and Evolution3, 11102766.

Brilli F, Loreto F, Baccelli I. 2019. Exploiting plant volatile organic compounds (VOCs) in agriculture to improve sustainable defense strategies and productivity of crops. Frontiers in Plant Science10, 264.

Bruce T J, Pickett J A. 2011. Perception of plant volatile blends by herbivorous insects-finding the right mix. Phytochemistry72, 1605–1611.

Cai X M, Bia L, Xu X X, Luo Z X, Li Z Q, Chen Z M. 2017. Field background odour should be taken into account when formulating a pest attractant based on plant volatiles. Scientific Reports7, 1–10.

Carrasco D, Larsson M C, Anderson P. 2015. Insect host plant selection in complex environments. Current Opinion in Insect Science8, 1–7.

Cheng Y X, Hu M, Kang A G, Xiao Y H, Luo L Z, Jiang X F. 2023. The sex ratio indicates the conclusion and onset of population cycles in the beet webworm Loxostege sticticalis L. (Lepidoptera: Pyralidae). Insects14, 81.

Chi D T, Thi H L, Vang L V, Thy T T, Yamamoto M, Ando T. 2024. Mass trapping of the diamondback moth (Plutella xylostella L.) by a combination of its sex pheromone and allyl isothiocyanate in cabbage fields in southern Vietnam. Journal of Pesticide Science49, 15–21.

Das P D, Raina R, Prasad A R, Sen A. 2007. Electroantennogram responses of the potato tuber moth, Phthorimaea operculella (Lepidoptera: Gelichiidae) to plant volatiles. Journal of Biosciences32, 339–349.

Deng J Y, Wei H Y, Huang Y P, Du J W. 2004. Enhancement of attraction to sex pheromones of Spodoptera exigua by volatile compounds produced by host plants. Journal of Chemical Ecology30, 2037–2045.

Dong Y F, Chen D P, Zhou S Y, Mao Z Y, Fan J T. 2024. Identification of attractants from three host plants and how to improve attractiveness of plant volatiles for Monochamus saltuariusPlants (Basel), 13, 1732.

Dudareva N, Klempien A, Muhlemann J K, Kaplan I. 2013. Biosynthesis, function and metabolic engineering of plant volatile organic compounds. The New Phytologist198, 16–32.

Dudareva N, Pichersky E, Gershenzon J. 2004. Biochemistry of plant volatiles. Plant Physiology135, 1893–1902.

Gregg P C, Del Socorro A P, Henderson G S. 2010. Development of a synthetic plant volatile-based attracticide for female noctuid moths. II, Bioassays of synthetic plant volatiles as attractants for the adults of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Australian Journal of Entomology49, 21–30.

Gregg P C, Del Socorro A P, Landolt P J. 2018. Advances in attract-and-kill for agricultural pests: Beyond pheromones. Annual Review of Entomology63, 453–470.

Hansson B S, Stensmyr M C. 2011. Evolution of insect olfaction. Neuron72, 698–711.

Huang A P, Bao X C, Liu B Y, Wang Y J, Zhou L Y, Ning J, Han B Y. 2012. Electroantennogram responses of the tea slug moth, Iragoides fasciata to some plant volatiles associated with tea, Camellia sinensisJournal of Insect Science12, 75.

Huang S Z, Zhang L, Xie D J, Tang J H, Jiang Y Y, Mijidsuren B, Baasan M, Luo L Z, Jiang X F. 2024. Transboundary migration of Loxostege sticticalis (Lepidoptera: Crambidae) among China, Russia and Mongolia. Pest Management Science80, 4650–4664.

Ji X W, Jiang X F, Yin J, Chen J L, Ding T B, Tan X L. 2024. The adaptability of beet webworm (Loxostege sticticalis) to soybeans and other different host plants. Agronomy14, 2595.

Johnson T L, Elgar M A, Symonds M R. 2022. Movement and olfactory signals: Sexually dimorphic antennae and female flightlessness in moths. Frontiers in Ecology and Evolution10, 919093.

Keesey I W, Jiang N J, Weißflog J, Winz R, Svatoš A, Wang C Z, Hansson B S, Knaden M. 2019. Plant based natural product chemistry for integrated pest management of Drosophila suzukiiJournal of Chemical Ecology45, 626–637.

Li E T, Wu H J, Qin J H, Luo J, Li K B, Cao Y Z, Zhang S, Peng Y, Yin J. 2023. Involvement of Holotrichia parallela odorant-binding protein 3 in the localization of oviposition sites. International Journal of Biological Macromolecules242, 124744.

Li G W, Chen Y X, Yan R, Lei Y X, Chen X L, Li B L. 2022. EAG and behavioral responses of adults of Adoxophyes orana (Lepidoptera: Tortricidae) to volatiles of its major host plants. Acta Entomologica Sinica65, 1026–1037. (in Chinese)

Liu A P, Cao Y X, Xu L B, Gao S J, Gao X L, Fan G M. 2011. The preliminary screening of synthetic pheromone of Loxostege sticticaiis. Chinese Journal of Applied Entomology48, 790–795. (in Chinese)

Liu Y M, Huang Y Y, Wang F F, Hu Y W, Zhang Z L, Cuthbertson A G S, Qiu B L, Sang W. 2024. Electrophysiological and behavioral responses of Tamarixia radiata (Hymenoptera: Eulophidae) to volatiles of nymphal Diaphorina citri (Hemiptera: Liviidae). Journal of Insect Science24, 23.

Ma L, Tang Y L, Zhang L, Jiang X F. 2023. Green manure crops as food source: Impact on the performance of the migratory beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Insects14, 693.

Makhlouf L, Fakhouri K E , Kemal S A, Maafa I, Kadmiri M I, Bouhssini M E. 2024. Potential of volatile organic compounds in the management of insect pests and diseases of food legumes: A comprehensive review. Frontiers in Plant Science15, 1430863.

Malo E A, Castrejón-Gómez V R, Cruz-López L, Rojas J C. 2020. Antennal sensilla and electrophysiological response of male and female Spodoptera frugiperda (Lepidoptera: Noctuidae) to conspecific sex pheromone and plant odors. Frontiers in Ecology and Evolution7, 8745–8755.

Malysh J M, Chertkova E A, Tokarev Y S. 2021. The microsporidium Nosema pyrausta as a potent microbial control agent of the beet webworm Loxostege sticticalisJournal of Invertebrate Pathology186, 107675.

Martel V, Anderson P, Hansson B S, Schlyter F. 2009. Peripheral modulation of olfaction by physiological state in the Egyptian leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Journal of Insect Physiology55, 793–797.

Ngumbi E, Chen L, Fadamiro H. 2010. Electroantennogram (EAG) responses of Microplitis croceipes and Cotesia marginiventris and their lepidopteran hosts to a wide array of odor stimuli: Correlation between EAG response and degree of host specificity? Journal of Insect Physiology56, 1260–1268.

Ninkovic V, Markovic D, Dahlin I. 2016. Decoding neighbour volatiles in preparation for future competition and implications for tritrophic interactions. Perspectives in Plant EcologyEvolution and Systematics23, 11–17.

Park K C, Ochieng S A, Zhu J, Baker T C. 2002. Odor discrimination using insect electroantennogram responses from an insect antennal array. Chemical Senses27, 343–352.

Pérez-Aparicio A, Torres-Vila L M, Gemeno C. 2019. EAG responses of adult Lobesia botrana males and females collected from Vitis vinifera and Daphne Gnidium to larval host-plant volatiles and sex pheromone. Insects10, 281.

Pophof B. 1997. Olfactory responses recorded from sensilla coeloconica of the silkmoth Bombyx moriPhysiological Entomology22, 239–248.

Schmidt H R, Benton R. 2020. Molecular mechanisms of olfactory detection in insects: Beyond receptors. Open Biology10, 200252.

Shakhmaev R N, Ishbaeva A U, Shayakhmetova I S. 2009. Stereoselective synthesis of 11(E)-tetradecen-1-yl acetate-Sex pheromone of sod webworm (Loxostege sticticalis). Russian Journal of General Chemistry79, 1171–1174.

Singh K D, Mobolade A J, Bharali R, Sahoo D, Rajashekar Y. 2021. Main plant volatiles as stored grain pest management approach: A review. Journal of Agriculture and Food Research4, 100127.

Tang R, Zhang J P, Zhang Z N. 2012. Electrophysiological and behavioral responses of male fall webworm moths (Hyphantria cunea) to herbivory-induced mulberry (Morus alba) leaf volatiles. PLoS ONE7, 1–7.

van Wijk M, De Bruijn P J, Sabelis M W. 2008. Predatory mite attraction to herbivore-induced plant odors is not a consequence of attraction to individual herbivore-induced plant volatiles. Journal of Chemical Ecology34, 791–803.

Xiang H M, Chen Z, Li X W, Guo Y Q, Li X C, Ma R Y. 2019. Two terpenoids activates close mating behavior and enhances trap efficiency of sex pheromone of Grapholita molestaJournal of Asia-Pacific Entomology22, 1109–1114.

Yan X Z, Ma L, Li X F, Li C, Liu Q Z, Song C F, Hao C, Zhao J Y, Qie X T, Deng C P, Wang C Z. 2023. Identification and evaluation of cruciferous plant volatiles attractive to Plutella xylostella L. (Lepidoptera: Plutellidae). Pest Management Science79, 5270–5282.

Yin J, Cao Y Z, Luo L Z, Hu Y. 2004. Ultra-structure of the antennal sensilla of the meadow moth, Loxostege sticticalisEntomological Science41, 56–59. (in Chinese)

Yin J, Cao Y Z, Luo L Z, Hu Y. 2005. Oviposition preference of the meadow moth, Loxostege sticticalis L., on different host plants and its chemical mechanism. Acta Ecologica Sinica25, 1844–1852. (in Chinese)

Yin J, Feng H L, Sun H Y, Xi J H, Cao Y Z, Li K B. 2012. Functional analysis of general odorant binding protein 2 from the meadow moth, Loxostege sticticalis L. (Lepidoptera: Pyralidae). PLoS ONE7, e33589.

Yu H L, Feng J L, Zhang Q W, Xu H L. 2014. (Z)-3-hexenyl acetate and 1-undecanol increase male attraction to sex pheromone trap in Grapholita molesta (Busck) (Lepidoptera: Tortricidae). International Journal of Pest Management61, 30–35.

Yu Z, Han H B, Li Y Y, Xu L B, Hao L F, Wang H, Wang W H, Gao S J, Lin K J. 2023. Functional characterization of pheromone receptors in the beet webworm, Loxostege sticticalis (Lepidoptera: Pyralidae). Insects14, 584.

Zhang L, Su Q F, Wang L S, Lv M W, Hou Y X, Li S S. 2023. Linalool: A ubiquitous floral volatile mediating the communication between plants and insects. Journal of Systematics and Evolution61, 538–549.

No related articles found!
No Suggested Reading articles found!