Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 398-402    DOI: 10.1016/j.jia.2024.11.010
Letter Advanced Online Publication | Current Issue | Archive | Adv Search |
Development of a fast LC-QqQ-MS/MS method for detecting flavonoids in the phenylpropanoid pathway of plants

Dili Lai1, 2*, Yu Fan3*, Md. Nurul Huda1, Yuanfen Gao1, Tanzim Jahan1, Wei Li1, Yuqi He1, Kaixuan Zhang1, Jianping Cheng2, Jingjun Ruan2, Baoping Zhao4, Meiliang Zhou1#

1 State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 College of Agriculture, Guizhou University, Guiyang 550025, China

3 School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China

4 Agronomy College, Inner Mongolia Agricultural University, Hohhot 010019, China

 Highlights 
● This method ensures the precise content of flavonoids in the phenylpropanoid pathway.
● For flavonoid-rich plants, the approach is very reliable.
● This method clarifies flavonoid dynamics, aiding gene function understanding.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

黄酮类化合物因其多种促进健康的作用而备受人们关注。然而,植物中存在许多结构相似的类黄酮,而且浓度往往很低,这在一定程度上增加了分离和鉴定的难度。液相色谱-三重四极杆飞行时间串联质谱法(LC-QqQ-MS/MS)成为检测类黄酮使用最广泛的技术之一。然而在植物中关于不同组织的黄酮类物质的系统检测方法较为匮乏。本研究系统构建了从苯丙烷开始到芦丁及其相关物质的检测方法,涉及黄酮化合物(21),香豆素3),花青素4),酚酸类4),原花青素4)和醌类2)。检测发现该方法适用于模式植物烟草和拟南芥部分物质的检测,高度适用于富含黄酮类物质的植物进行检测,如荞麦属植物。该方法的建立可以为了解苯丙烷途径黄酮类物质的动态变化提供助力,进而为深入理解基因功能提供支持。



Received: 26 August 2024   Accepted: 18 October 2024
Fund: 

This research was supported by the National Key Research and Development Program of China (2023YFD1600700 and 2023YFD1600701).  

About author:  #Correspondence Meiliang Zhou, E-mail: zhoumeiliang@caas.cn * These authors contributed equally to this study.

Cite this article: 

Dili Lai, Yu Fan, Md. Nurul Huda, Yuanfen Gao, Tanzim Jahan, Wei Li, Yuqi He, Kaixuan Zhang, Jianping Cheng, Jingjun Ruan, Baoping Zhao, Meiliang Zhou. 2025. Development of a fast LC-QqQ-MS/MS method for detecting flavonoids in the phenylpropanoid pathway of plants. Journal of Integrative Agriculture, 24(1): 398-402.

Dong N Q, Lin H X. 2021. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology63, 180–209.

Gaberscik A, Voncina M, Trost T, Germ M, Björn L O. 2002. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient and enhanced UV-B radiation. Journal of Photochemistry and Photobiology B-Biology66, 30–36.

Gao P H, Qi Y, Li L F, Yang S W, Guo J W, Liu J N, Wei H Y, Huang F Y, Yu L. 2024. Phenylpropane biosynthesis and alkaloid metabolism pathways involved in resistance of Amorphophallus spp. against soft rot disease. Frontiers in Plant Science15, doi: 10.3389/fpls.2024.1334996.

El-Najjar N, GaliMuhtasib H, Ketola R A, Vuorela P, Urtti A, Vuorela H. 2011. The chemical and biological activities of quinones: overview and implications in analytical detection. Phytochemistry Reviews10, 353–370.

He Q, Ma D, Li W, Xing L, Zhang H, Wang Y, Du C, Li X, Jia Z, Li X, Liu J, Liu Z, Miao Y, Feng R, Lv Y, Wang M, Lu H, Li X, Xiao Y, Wang R, Liang H, Zhou Q, Zhang L, Liang C, Du H. 2023. High-quality Fagopyrum esculentum genome provides insights into the flavonoid accumulation among different tissues and self-incompatibility. Journal of Integrative Plant Biology65, 1423–1441.

He Y, Zhang K, Li S, Lu X, Zhao H, Guan C, Huang X, Shi Y, Kang Z, Fan Y, Li W, Chen C, Li G, Long O, Chen Y, Hu M, Cheng J, Xu B, Chapman M A, Georgiev M I, Fernie A R, Zhou M. 2023. Multiomics analysis reveals the molecular mechanisms underlying virulence in Rhizoctonia and jasmonic acid-mediated resistance in Tartary buckwheat (Fagopyrum tataricum). The Plant Cell35, 2773–2798.

Hou S, Du W, Hao Y, Han Y, Li H, Liu L, Zhang K, Zhou M, Sun Z. 2021. Elucidation of the regulatory network of flavonoid biosynthesis by profiling the metabolome and transcriptome in Tartary buckwheat. Journal of Agricultural Food and Chemistry69, 7218–7229.

Huda M N, Lu S, Jahan T, Ding M, Jha R, Zhang K, Zhang W, Georgiev M I, Park S U, Zhou M. 2021. Treasure from garden: Bioactive compounds of buckwheat. Food Chemistry335, 127653.

Ismail H, Dragisic Maksimovic J, Maksimovic V, Shabala L, Zivanovic B D, Tian Y, Jacobsen S E, Shabala S. 2015. Rutin, a flavonoid with antioxidant activity, improves plant salinity tolerance by regulating K+ retention and Na+ exclusion from leaf mesophyll in quinoa and broad beans. Functional Plant Biology43, 75–86.

Joshi D C, Zhang K, Wang C, Chandora R, Khurshid M, Li J, He M, Georgiev M I, Zhou M. 2020. Strategic enhancement of genetic gain for nutraceutical development in buckwheat: A genomics-driven perspective. Biotechnology Advances39, 107479.

Kreft I, Zhou M, Golob A, Germ M, Likar M, Dziedzic K, Luthar Z. 2020. Breeding buckwheat for nutritional quality. Breed Science70, 67–73.

Li P, Lei K, Liu L, Zhang G, Ge H, Zheng C, Shu H, Zhang S, Ji L. 2021. Identification and functional characterization of a new flavonoid synthase gene MdFLS1 from apple. Planta253, doi: 10.1007/s00425-021-03615-2.

Matos M J. 2021. Coumarin and its derivatives - Editorial. Molecules26, 6320.

Mayr C, De Rosso M, Dalla Vedova A, Flamini R. 2018. High-resolution mass spectrometry identification of secondary metabolites in four red grape varieties potentially useful as traceability markers of wines. Beverages4, doi: 10.3390/beverages4040074.

Meng J, Zhang Y, Wang G, Ji M, Wang B, He G, Wang Q, Bai F, Xu K, Yuan D, Li S, Cheng Y, Wei S, Fu C, Wang G, Zhou G. 2022. Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples. Food Chemistry390, doi: 10.1016/j.foodchem.2022.133155.

Mi S, Yu W, Li J, Liu M, Sang Y, Wang X. 2020. Characterization and discrimination of chilli peppers based on multi-element and non-targeted metabolomics analysis. Lwt131, doi: 10.1016/j.lwt.2020.109742.

Tohge T, de Souza L P, Fernie A R. 2017. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. Journal of Experimental Botany68, 4013–4028.

Wang Z, Ma L, Liu P, Luo Z, Li Z, Wu M, Xu X, Pu W, Huang P, Yang J. 2023. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. Plant Science326, doi: 10.1016/j.plantsci.2022.111522.

Wojdyło A, Nowicka P. 2019. Anticholinergic effects of Actinidia arguta fruits and their polyphenol content determined by liquid chromatography-photodiode array detector-quadrupole/time of flight-mass spectrometry (LC-MS-PDA-Q/TOF). Food Chemistry271, 216–223.

Xing T T, Zhao X J, Zhang Y D, Li Y F. 2017. Fast separation and sensitive quantitation of polymethoxylated flavonoids in the peels of citrus using UPLC-Q-TOF-MS. Journal of Agricultural and Food Chemistry65, 2615–2627.

Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, Li Y, Cao Y, Qi M, Zhu Y, Lu H, Ma M, Liu L, Zhou J, Nan C, Qin Y, Wang J, Cui L, Liu H, Liang C, Qiao Z. 2017. The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tolerance. Molecular Plant10, 1224–1237.

Zhang X, Liu C J. 2015. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Molecular Plant8, 17–27.

Zou X D, Bk A, Rauf A, Saeed M, Al-Awthan Y S, Al-Duais M A, Bahattab O, Khan M H, Suleria H A R. 2021. Screening of polyphenols in tobacco (Nicotiana tabacum) and determination of their antioxidant activity in different tobacco varieties. ACS Omega6, 25361–25371.

No related articles found!
No Suggested Reading articles found!