Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1477-1488    DOI: 10.1016/j.jia.2024.06.002
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
Molecular mechanism of delayed development by interfering RNA targeting the phenylalanine ammonia lyase gene (pal1) in Pleurotus ostreatus

Qi He1, 2, Yuqing Jiang2, Chenyang Huang2, Lijiao Zhang2, Ludan Hou4, 5, Fangjie Yao1, 3#, Mengran Zhao2#

1 Engineering Research Center of Edible and Medicinal Fungi, Ministry of Education/Jilin Agricultural University, Changchun 130118, China

2 State Key Laboratory of Efficient Utilization of Arable Land in China/Key Laboratory of Microbial Resources Collection and Preservation of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China

3 College of Horticulture, Jilin Agricultural University, Changchun 130118, China

4 College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China

5 Shanxi Key Laboratory of Edible Fungi for Loess Plateau, Taigu 030801, China

 Highlights 
A reduction in the pal1 transcript level affected the key pathways which cat1 gene involved in.
Pal1 upregulated the expression of cat1 by affecting the intracellular H2O2 content.
Overexpression of cat1 gene resulted in growth retardation in Pleurotus ostreatus.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

食用菌发育受阻会影响子实体的生产周期和产量。苯丙氨酸解氨酶(PALEC 4.3.1.5是一种催化苯丙氨酸脱氨生成反式肉桂酸的酶。前期研究结果发现,糙皮侧耳pal1基因的转录降低能够延缓子实体发育因此,我们以野生型(WT)RNA干扰(RNAi)菌株为材料,利用转录组测序和农杆菌介导的遗传转化方法,研究了pal1基因的分子调控机制。结果表明,干扰pal1基因导致PAL酶活性和总酚含量下降胞内H2O2含量增加。RNA-Seq数据表明,KEGG通路显著富集在过氧化物酶途径、MAPK信号途径-酵母和另外三条途径,编码过氧化氢酶的基因cat1参与了上述显著富集的多个通路。外源H2O2能够显著增强cat1基因的转录,提高CAT总酶活性。添加H2O2清除剂后,RNAi-pal1菌株的cat1基因转录水平和CAT酶活性显著高于野生型菌株,表明pal1通过影响胞内的H2O2含量来调节cat1的表达。过表达糙皮侧耳cat1基因导致了生长迟缓,尤其是在原基形成过程中。综上所述,本研究阐明了PAL1通过信号分子H2O2影响cat1基因的表达从而调控了糙皮侧耳的发育。研究结果深化了对食用菌分子发育机制的理解。



Abstract  
Blocking the development of edible mushrooms will affect the production cycle and yield of fruiting bodies.  Phenylalanine ammonia lyase (PAL, EC 4.3.1.24.) is an enzyme that catalyzes the deamination of phenylalanine to form trans-cinnamic acid.  Previous studies have shown that a decrease in pal1 gene transcription delays fruiting body development in Pleurotus ostreatus.  Herein, we used wild type (WT) and RNA interference (RNAi) strains to study the molecular regulation of pal1 by RNA sequencing and Agrobacterium-mediated genetic transformation.  Our results showed that interference with the pal1 gene resulted in reductions in the total PAL enzyme activity and the total phenol content, as well as an increase in the intracellular H2O2 content.  RNA-Seq data demonstrated that the significantly enriched KEGG terms were mainly related to the peroxisome pathway, MAPK signaling pathway-yeast and three other pathways, and the catalase (CAT) gene cat1 is also involved in multiple pathways that were enriched above.  Exogenous H2O2 significantly enhanced the transcription of the cat1 gene and elevated total CAT enzymatic activity.  Moreover, the levels of cat1 gene transcription and the total CAT enzymatic activity in the RNAi-pal1 strains gradually become closer to those in the WT strain through the removal of H2O2, which indicated that pal1 regulated the expression of cat1 by affecting the intracellular H2O2 content.  Finally, the overexpression of the cat1 gene in P. ostreatus caused growth retardation, especially during the process of primordia formation.  In conclusion, this study demonstrated that PAL1 affects cat1 gene expression through the signaling molecule H2O2 and regulates the development of P. ostreatus.  The findings of this study enhance our understanding of the molecular developmental mechanism of edible mushrooms.


Keywords:  Pleurotus ostreatus        phenylalanine ammonia lyase        catalase        development        regulation  
Received: 16 November 2023   Accepted: 23 May 2024
Fund: 
This study was supported by the National Key R&D Program of China (2022YFD1200600), the National Natural Science Foundation of China (32002110) and the earmarked fund for China Agriculture Research System (CARS-20). 
About author:  Qi He, E-mail: heqi_jlau@126.com; #Correspondence Fangjie Yao, E-mail: yaofj@aliyun.com; Mengran Zhao, E-mail: zhaomengran@caas.cn

Cite this article: 

Qi He, Yuqing Jiang, Chenyang Huang, Lijiao Zhang, Ludan Hou, Fangjie Yao, Mengran Zhao. 2025. Molecular mechanism of delayed development by interfering RNA targeting the phenylalanine ammonia lyase gene (pal1) in Pleurotus ostreatus. Journal of Integrative Agriculture, 24(4): 1477-1488.

Alfonso-Prieto M, Biarnés X, Vidossich P, Rovira C. 2009. The molecular mechanism of the catalase reaction. Journal of the American Chemical Society131, 11751–11761.

Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology55, 373–399.

Babaoğlu Aydaş S, Ozturk S, Aslım B. 2013. Phenylalanine ammonia lyase (PAL) enzyme activity and antioxidant properties of some cyanobacteria isolates. Food Chemistry136, 164–169.

Bandurska H, Cieslak M. 2013. The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves. Environmental and Experimental Botany94, 9–18.

Barros J, Dixon R A. 2020. Plant phenylalanine/tyrosine ammonia-lyases. Trends in Plant Science25, 66–79.

Calabrese G, Peker E, Amponsah P S, Hoehne M N, Riemer T, Mai M, Bienert G P, Deponte M, Morgan B, Riemer J. 2019. Hyperoxidation of mitochondrial peroxiredoxin limits H2O2-induced cell death in yeast. EMBO Journal38, e101552.

Chen Y, Li F, Tian L, Huang M, Deng R, Li X, Chen W, Wu P, Li M, Jiang H, Wu G. 2017. The phenylalanine ammonia lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotus japonicus-rhizobium symbioses. Molecular Plant–Microbe Interactions30, 739–753.

Feldman D, Kowbel D J, Glass N L, Yarden O, Hadar Y. 2017. A role for small secreted proteins (SSPs) in a saprophytic fungal lifestyle: Ligninolytic enzyme regulation in Pleurotus ostreatusScientific Reports7, 14553.

Fu Y, Dai Y, Yang C, Wei P, Song B, Yang Y, Sun L, Zhang Z W, Li Y. 2017. Comparative transcriptome analysis identified candidate genes related to Bailinggu mushroom formation and genetic markers for genetic analyses and breeding. Scientific Reports7, 9266.

Heim K E, Tagliaferro A R, Bobilya D J. 2002. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. Journal of Nutritional Biochemistry13, 572–584.

Hou L, Huang C, Wu X, Zhang J, Zhao M. 2022. Nitric oxide negatively regulates the rapid formation of Pleurotus ostreatus primordia by inhibiting the mitochondrial aco gene. Journal of Fungi8, 1055.

Hou L, Wang L, Wu X, Gao W, Zhang J, Huang C. 2019. Expression patterns of two pal genes of Pleurotus ostreatus across developmental stages and under heat stress. BMC Microbiology, 19, 231.

Hou Z, Chen Q, Zhao M, Huang C, Wu X. 2020. Genome-wide characterization of the Zn(II)2Cys6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. PeerJ8, e9336.

Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology153, 1526–1538.

Jaworska G, Bernaś E, Mickowska B. 2011. Effect of production process on the amino acid content of frozen and canned Pleurotus ostreatus mushrooms. Food Chemistry125, 936–943.

Joo J, Lee Y H, Song S I. 2014. Rice CatACatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively. Journal of Plant Biology57, 375–382.

Kamei M, Yamashita K, Takahashi M, Fukumori F, Ichiishi A, Fujimura M. 2016. Involvement of MAK-1 and MAK-2 MAP kinases in cell wall integrity in Neurospora crassaBioscience Biotechnology and Biochemistry80, 1843–1852.

Kang L, Zhou J, Wang R, Zhang X, Liu C, Liu Z, Yuan S. 2019. Glucanase-induced stipe wall extension shows distinct differences from chitinase-induced stipe wall extension of Coprinopsis cinereaApplied and Environmental Microbiology85, e01345–19.

Kolahi M, Jonoubi P, Majd A, Tabandeh M R, Hashemitabar M. 2013. Differential expression of phenylalanine ammonia-lyase in different tissues of sugarcane (Saccharum officinarum L.) during development. Bioresources8, 4912–4922.

Koukol J, Conn E E. 1961. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgareJournal of Biological Chemistry236, 2692–2698.

Kyosseva S V. 2004. Mitogen-activated protein kinase signaling. International Review of Neurobiology59, 201–220.

Liu X B, Xia E H, Li M, Cui Y Y, Wang P M, Zhang J X, Xie B G, Xu J P, Yan J J, Li J, Nagy L G, Yang Z L. 2020. Transcriptome data reveal conserved patterns of fruiting body development and response to heat stress in the mushroom-forming fungus Flammulina filiformisPLoS ONE15, e0239890.

Lodhi I J, Semenkovich C F. 2014. Peroxisomes: a nexus for lipid metabolism and cellular signaling. Cell Metabolism19, 380–392.

Meng L, Lyu X, Shi L, Wang Q, Wang L, Zhu M, Mukhtar I, Xie B, Wang W. 2021. The transcription factor FvHmg1 negatively regulates fruiting body development in Winter Mushroom Flammulina velutipesGene785, 145618.

Nag S, Kumaria S. 2018. In silico characterization and transcriptional modulation of phenylalanine ammonia lyase (PAL) by abiotic stresses in the medicinal orchid Vanda coerulea Griff. ex Lindl. Phytochemistry156, 176–183.

Qi Y, Huang C, Zhao M, Wu X, Li G, Zhang Y, Zhang L. 2023. milR20 negatively regulates the development of fruit bodies in Pleurotus cornucopiaeFrontiers in Microbiology14, 1177820.

Shi R, Sun Y H, Li Q, Heber S, Sederoff R, Chiang V L. 2010. Towards a systems approach for lignin biosynthesis in Populus trichocarpa: transcript abundance and specificity of the monolignol biosynthetic genes. Plant and Cell Physiology51, 144–163.

Sirin S, Aslim B. 2019. Determination of antioxidant capacity, phenolic acid composition and antiproliferative effect associated with phenylalanine ammonia lyase (PAL) activity in some plants naturally growing under salt stress. Medicinal Chemistry Research28, 229–238.

Song J, Wang Z. 2011. RNAi-mediated suppression of the phenylalanine ammonia-lyase gene in Salvia miltiorrhiza causes abnormal phenotypes and a reduction in rosmarinic acid biosynthesis. Journal of Plant Research124, 183–192.

Tang L H, Jian H H, Song C Y, Bao D P, Shang X D, Wu D Q, Tan Q, Zhang X H. 2013. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodesApplied Microbiology and Biotechnology97, 4977–4989.

Tasaki Y, Hayashi S, Kato M. 2018. L-Phenylalanine supplementation increases the production of phenylalanine ammonia-lyase and methyl cinnamate in the mycelia of Tricholoma matsutakeMycoscience59, 8–11.

Tasaki Y, Miyakaula H. 2015. Structure and expression of two phenylalanine ammonia-lyase genes of the basidiomycete mushroom Tricholoma matsutakeMycoscience56, 503–511.

Tonnessen B W, Manosalva P, Lang J M, Baraoidan M, Bordeos A, Mauleon R, Oard J, Hulbert S, Leung H, Leach J E. 2015. Rice phenylalanine ammonia-lyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Molecular Biology87, 273–286.

Xu D, Wang Y, Keerio A A, Ma A. 2021. Identification of hydrophobin genes and their physiological functions related to growth and development in Pleurotus ostreatusMicrobiological Research247, 126723.

Yun Y H, Koo J S, Kim S H, Kong W S. 2015. Cloning and expression analysis of phenylalanine ammonia-lyase gene in the mycelium and fruit body of the edible mushroom Flammulina velutipesMycobiology43, 327–332.

Zhou J, Kang L, Liu C, Niu X, Wang X, Liu H, Zhang W, Liu Z, Latgé J P, Yuan S. 2019. Chitinases play a key role in stipe cell wall extension in the mushroom Coprinopsis cinereaApplied and Environmental Microbiology85, e00532-19.

No related articles found!
No Suggested Reading articles found!