Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (12): 4670-4689    DOI: 10.1016/j.jia.2024.03.054
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Protein disulfide isomerase MoPdi1 regulates fungal development, virulence, and endoplasmic reticulum homeostasis in Magnaporthe oryzae

Yu Wang1, 2*, Xiaoru Kang1, 2*, Xinyue Cui1, 2*, Jinmei Hu1, 2, Yuemin Pan1, 2#, Yizhen Deng3#, Shulin Zhang1, 2#

1 Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China

2 Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China

3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China

 Highlights 
●MoPdi1 is involved in regulation of ER homeostasis of M. oryzae.
MoPdi1 contributes to regulating the formation of intermolecular disulfide bonds in substrate proteins of M. oryzae.
MoPdi1 affects the secreation of cytoplasmic effectors in M. oryzae.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
由稻瘟病菌侵染水稻引起的稻瘟病严重威胁水稻安全生产。在稻瘟病菌侵染寄主的过程中,病原菌通过分泌效应蛋白以克服寄主免疫反应。在效应蛋白分泌至寄主细胞之前,效应蛋白需在内质网中合成、修饰以及成熟。由蛋白质二硫键异构酶Pdi1催化形成的二硫键在蛋白质折叠和成熟过程中发挥重要作用。然而,其在稻瘟病菌中的功能尚不清楚。鉴于此,本研究在稻瘟病菌中鉴定到一个内质网定位蛋白MoPdi1,生物信息学分析显示,其含有a, b, b’, a’和c结构域,并且在a和a’结构域中具有CGHC保守基序。为了明确MoPDI1在稻瘟病菌中的生物学功能,本研究采用同源重组策略对该基因进行敲除,获得敲除突变体∆Mopdi1。表型分析结果表明,MoPDI1参与调控稻瘟病菌产孢、细胞壁完整性、寄主活性氧清除和致病力。同时,本研究获得了CGHC保守基序的突变体,研究结果显示,该保守基序突变导致稻瘟病菌产孢和致病力显著下降。此外,我们发现, MoPdi1影响稻瘟病菌对内质网胁迫因子的敏感性,并且正向调控内质网自噬,表明MoPdi1参与维持稻瘟病菌内质网稳态。在此基础上,本研究通过蛋白互作技术证实了在稻瘟病菌中MoPdi1与MoHut1互作,并且MoPDI1缺失导致MoHut1不能够形成二聚体。我们也提供证据表明,当MoPDI1MoHUT1缺失后,稻瘟病菌胞质效应子AVR-Pia的分泌异常。进一步通过基因缺失和表型分析显示, MoHUT1影响稻瘟病菌的营养生长、产孢和致病力。综上所述,本研究揭示了MoPdi1通过调控内质网稳态、底物二硫键形成以及胞质效应蛋白的分泌从而影响稻瘟病菌的发育和致病力,同时可为环境友好型杀菌剂的研发提供新的参考靶点。


Abstract  

Rice blast, caused by Magnaporthe oryzae, is a fungal disease that causes devastating damage to rice production worldwide.  During infection, pathogens secrete effector proteins that modulate plant immunity.  Disulfide bond formation catalyzed by protein disulfide isomerases (PDI) is essential for protein folding and maturation.  However, the biological function of Pdi1 in Moryzae has not yet been characterized.  In this study, we identified the endoplasmic reticulum (ER)-located protein, MoPdi1, in Moryzae.  MoPdi1 regulates conidiation, cell wall stress, and pathogenicity of Moryzae.  Furthermore, the CGHC active sites in the a and a’ redox domain of MoPdi1 were essential for the biological function of MoPDI1.  Further tests demonstrated that MoPdi1 was involved in the regulation of ER stress and positively regulated ER phagy.  We also found that MoPdi1 interacted with MoHut1.  Deletion of MoPDI1 led to the bereft of MoHut1 dimerization, which depends on the formation of disulfide bonds.  In addition, MoPdi1 affected the normal secretion of the cytoplasmic effector AVR-Pia.  We provided evidence that MoHut1 is important for the vegetative growth, conidiation, and pathogenicity in Moryzae.  Therefore, our findings could provide a suitable target point for designing antifungal agrochemicals against rice blast fungus.

Keywords:  Magnaporthe oryzae        protein disulfide isomerase        MoPdi1        fungal development        pathogenesis  
Received: 16 November 2023   Accepted: 01 February 2024 Online: 16 March 2024  
Fund: This study was supported by the National Natural Science Foundation of China (32202253), the Natural Science Foundation of Anhui Higher Education Institutions, China (KJ2020A0102) and the Talent Research Project of Anhui Agricultural University, China (rc342001). 
About author:  Yu Wang, E-mail: wangyu2811@163.com; Xiaoru Kang, E-mail: 1737812015@qq.com; Xinyue Cui, E-mail: 1612376752@qq.com; #Correspondence Shulin Zhang, E-mail: zhangsl80h@ahau.edu.cn; Yizhen Deng, E-mail: dengyz@scau.edu.cn; Yuemin Pan, E-mail: panyuemin2008@163.com * These authors contributed equally to this study.

Cite this article: 

Yu Wang, Xiaoru Kang, Xinyue Cui, Jinmei Hu, Yuemin Pan, Yizhen Deng, Shulin Zhang. 2025. Protein disulfide isomerase MoPdi1 regulates fungal development, virulence, and endoplasmic reticulum homeostasis in Magnaporthe oryzae. Journal of Integrative Agriculture, 24(12): 4670-4689.

Appenzeller-Herzog C, Ellgaard L. 2008. The human PDI family: Versatility packed into a single fold. Biochimica et Biophysica Acta1783, 535–548.

Cid V J, Duran A, Del Rey F, Snyder M P, Nombela C, Sanchez M. 1995. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiaeMicrobiology Reviews59, 345–386.

Dean R, Van Kan J A, Pretorius Z A, Hammond-Kosack K E, Di Pietro A, Spanu P D, Rudd J J, Dickman M, Kahmann R, Ellis J, Foster G D. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology13, 414–430.

Dejima K, Murata D, Mizuguchi S, Nomura K H, Gengyo-Ando K, Mitani S, Kamiyama S, Nishihara S, Nomura K. 2009. The ortholog of human solute carrier family 35 member B1 (UDP-galactose transporter-related protein 1) is involved in maintenance of ER homeostasis and essential for larval development in Caenorhabditis elegansFASEB Journal23, 2215–2225.

Dong Y, Li Y, Zhao M, Jing M, Liu X, Liu M, Guo X, Zhang X, Chen Y, Liu Y, Liu Y, Ye W, Zhang H, Wang Y, Zheng X, Wang P, Zhang Z. 2015. Global genome and transcriptome analyses of Magnaporthe oryzae epidemic isolate 98-06 uncover novel effectors and pathogenicity-related genes, revealing gene gain and lose dynamics in genome evolution. PLoS Pathogens11, e1004801.

Ebbole D J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology45, 437–456.

Ellgaard L, Ruddock L W. 2005. The human protein disulphide isomerase family: Substrate interactions and functional properties. EMBO Reports6, 28–32.

Fan F, Zhang Q, Zhang Y, Huang G, Liang X, Wang C C, Wang L, Lu D. 2022. Two protein disulfide isomerase subgroups work synergistically in catalyzing oxidative protein folding. Plant Physiology188, 241–254.

Freedman R B, Hirst T R, Tuite M F. 1994. Protein disulphide isomerase: Building bridges in protein folding. Trends in Biochemical Sciences19, 331–336.

Gao Y, Xiong X, Wang H, Wang J, Bi Y, Yan Y, Cao Z, Li D, Song F. 2022. Ero1-Pdi1 module-catalysed dimerization of a nucleotide sugar transporter, FonNst2, regulates virulence of Fusarium oxysporum on watermelon. Environmental Microbiology24, 1200–1220.

Giraldo M C, Dagdas Y F, Gupta Y K, Mentlak T A, Yi M, Martinez-Rocha A L, Saitoh H, Terauchi R, Talbot N J, Valent B. 2013. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzaeNature Communications4, 1996.

Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Song W, Wang W, Wang Q, Lv R, Zhang Z, Wang Y, Zheng X. 2010. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzaeMolecular Plant-Microbe Interactions23, 1053–1068.

Hamer J E, Howard R J, Chumley F G, Valent B. 1988. A mechanism for surface attachment in spores of a plant pathogenic fungus. Science239, 288–290.

Hamer J E, Talbot N J. 1998. Infection-related development in the rice blast fungus Magnaporthe griseaCurrent Opinion in Microbiology1, 693–697.

Hatahet F, Ruddock L W. 2009. Protein disulfide isomerase: A critical evaluation of its function in disulfide bond formation. Antioxidants & Redox Signaling11, 2807–2850.

Holst B, Tachibana C, Winther J R. 1997. Active site mutations in yeast protein disulfide isomerase cause dithiothreitol sensitivity and a reduced rate of protein folding in the endoplasmic reticulum. Journal of Cell Biology138, 1229–1238.

Howard R J, Ferrari M A, Roach D H, Money N P. 1991. Penetration of hard substrates by a fungus employing enormous turgor pressures. Proceedings of the National Academy of Sciences of the United States of America88, 11281–11284.

Howard R J, Valent B. 1996. Breaking and entering: Host penetration by the fungal rice blast pathogen Magnaporthe griseaAnnual Review of Microbiology50, 491–512.

Huang K, Czymmek K J, Caplan J L, Sweigard J A, Donofrio N M. 2011. HYR1- mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathogens7, e1001335.

Ishida N, Miura N, Yoshioka S, Kawakita M. 1996. Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belonging to the nucleotide-sugar transporter gene family. Journal of Biological Chemistry120, 1074–1078.

Jessop C E, Watkins R H, Simmons J J, Tasab M, Bulleid N J. 2009. Protein disulphide isomerase family members show distinct substrate specificity: P5 is targeted to BiP client proteins. Journal of Cell Science122, 4287–4295.

Kayum M A, Park J I, Nath U K, Saha G, Biswas M K, Kim H T, Nou I S. 2017. Genome-wide characterization and expression profiling of PDI family gene reveals function as abiotic and biotic stress tolerance in Chinese cabbage (Brassica rapa ssp. pekinensis). BMC Genomics18, 885.

Kemmink J, Darby N J, Dijkstra K, Nilges M, Creighton T E. 1997. The folding catalyst protein disulfide isomerase is constructed of active and inactive thioredoxin modules. Current Biology7, 239–245.

Kim S, Kim C Y, Park S Y, Kim K T, Jeon J, Chung H, Choi G, Kwon S, Choi J, Jeon J, Jeon J S, Khang C H, Kang S, Lee Y H. 2020. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications11, 5845.

Klappa P, Ruddock L W, Darby N J, Freedman R B. 1998. The b’ domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. EMBO Journal17, 927–935.

Kou Y, Qiu J, Tao Z. 2019. Every coin has two sides: reactive oxygen species during rice-Magnaporthe oryzae interaction. International Journal of Molecular Sciences20, 1191.

Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. 2021. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzaeNew Phytologist230, 720–736.

Lu Y, Yuan L, Zhou Z, Wang M, Wang X, Zhang S, Sun Q. 2021. The thiol-disulfide exchange activity of AtPDI1 is involved in the response to abiotic stresses. BMC Plant Biology21, 557.

Lyles M M, Gilbert H F. 1991. Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: Pre-Steady-state kinetics and the utilization of the oxidizing equivalents of the isomerase. Biochemistry30, 619–625.

Marin-Menguiano M, Moreno-Sanchez I, Barrales R R, Fernandez-Alvarez A, Ibeas J I. 2019. N-glycosylation of the protein disulfide isomerase Pdi1 ensures full Ustilago maydis virulence. PLoS Pathogens15, e1007687.

Meng Y, Zhang Q, Zhang M, Gu B, Huang G, Wang Q, Shan W. 2015. The protein disulfide isomerase 1 of Phytophthora parasitica (PpPDI1) is associated with the haustoria-like structures and contributes to plant infection. Frontiers in Plant Science6, 632.

Mentlak T A, Kombrink A, Shinya T, Ryder L S, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma B P, Talbot N J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell24, 322–335.

Meusser B, Hirsch C, Jarosch E, Sommer T. 2005. ERAD: The long road to destruction. Nature Cell Biology7, 766–772.

Mochida K, Nakatogawa H. 2022. ER-phagy: Selective autophagy of the endoplasmic reticulum. EMBO Reports23, e55192.

Nakanishi H, Nakayama K, Yokota A, Tachikawa H, Takahashi N, Jigami Y. 2001. Hut1 proteins identified in Saccharomyces cerevisiae and Schizosaccharomyces pombe are functional homologues involved in the protein-folding process at the endoplasmic reticulum. Yeast18, 543–554.

Oyadomari S, Mori M. 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death and Differentiation11, 381–389.

Pan Y, Pan R, Tan L, Zhang Z, Guo M. 2019. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzaeCurrent Genetics65, 223–239.

Qian B, Su X, Ye Z, Liu X, Liu M, Shen D, Chen H, Zhang H, Wang P, Zhang Z. 2022. MoErv29 promotes apoplastic effector secretion contributing to virulence of the rice blast fungus Magnaporthe oryzaeNew Phytologist233, 1289–1302.

Qu Y, Wang J, Zhu X, Dong B, Liu X, Lu J, Lin F. 2020. The P5-type ATPase Spf1 is required for development and virulence of the rice blast fungus Pyricularia oryzaeCurrent Genetics66, 385–395.

Ren Z, Tang B, Xing J, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen X L. 2022. MTA1-mediated RNA m(6) A modification regulates autophagy and is required for infection of the rice blast fungus. New Phytologist235, 247–262.

Reyes F, Marchant L, Norambuena L, Nilo R, Silva H, Orellana A. 2006. AtUTr1, a UDP-glucose/UDP-galactose transporter from Arabidopsis thaliana, is located in the endoplasmic reticulum and up-regulated by the unfolded protein response. Journal of Biological Chemistry281, 9145–9151.

Robert-Seilaniantz A, Grant M, Jones J D. 2011. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annual Review of Phytopathology49, 317–343.

Sallee M D, Greenwald I. 2015. Dimerization-driven degradation of C. elegans and human E proteins. Genes & Development29, 1356–1361.

Schroder M, Kaufman R J. 2005. ER stress and the unfolded protein response. Mutation Research569, 29–63.

Schwaller M, Wilkinson B, Gilbert H F. 2003. Reduction-reoxidation cycles contribute to catalysis of disulfide isomerization by protein-disulfide isomerase. Journal of Biological Chemistry278, 7154–7159.

Singh R, Dangol S, Chen Y, Choi J, Cho Y S, Lee J E, Choi M O, Jwa N S. 2016. Magnaporthe oryzae effector AVR-Pii helps to establish compatibility by inhibition of the rice NADP-Malic enzyme resulting in disruption of oxidative burst and host innate immunity. Molecules and Cells39, 426–438.

Smith M H, Ploegh H L, Weissman J S. 2011. Road to ruin: Targeting proteins for degradation in the endoplasmic reticulum. Science334, 1086–1090.

Stephani M, Picchianti L, Gajic A, Beveridge R, Skarwan E, Sanchez De Medina Hernandez V, Mohseni A, Clavel M, Zeng Y, Naumann C, Matuszkiewicz M, Turco E, Loefke C, Li B, Durnberger G, Schutzbier M, Chen H T, Abdrakhmanov A, Savova A, Chia K S, et al. 2020. A cross-kingdom conserved ER-phagy receptor maintains endoplasmic reticulum homeostasis during stress. eLIFE9, e58396.

Sugiura Y, Araki K, Iemura S, Natsume T, Hoseki J, Nagata K. 2010. Novel thioredoxin-related transmembrane protein TMX4 has reductase activity. Journal of Biological Chemistry285, 7135–7142.

Sun J L, Li J Y, Wang M J, Song Z T, Liu J X. 2021. Protein quality control in plant organelles: Current Progress and future perspectives. Molecular Plant14, 95–114.

Szegezdi E, Logue S E, Gorman A M, Samali A. 2006. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports7, 880–885.

Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. 2015. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzaeEnvironmental Microbiology17, 1377–1396.

Travers K J, Patil C K, Wodicka L, Lockhart D J, Weissman J S, Walter P. 2000. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell101, 249–258.

Vitu E, Kim S, Sevier C S, Lutzky O, Heldman N, Bentzur M, Unger T, Yona M, Kaiser C A, Fass D. 2010. Oxidative activity of yeast Ero1p on protein disulfide isomerase and related oxidoreductases of the endoplasmic reticulum. Journal of Biological Chemistry285, 18155–18165.

Walker K W, Lyles M M, Gilbert H F. 1996. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry35, 1972–1980.

Wang C, Liu Y, Liu L, Wang Y, Yan J, Wang C, Li C, Yang J. 2019. The biotrophy-associated secreted protein 4 (BAS4) participates in the transition of Magnaporthe oryzae from the biotrophic to the necrotrophic phase. Saudi Journal of Biological Sciences26, 795–807.

Wang L, Wang X, Wang C C. 2015. Protein disulfide-isomerase, a folding catalyst and a redox-regulated chaperone. Free Radical Biology and Medicine83, 305–313.

Wei Y Y, Liang S, Zhang Y R, Lu J P, Lin F C, Liu X H. 2020. MoSec61beta, the beta subunit of Sec61, is involved in fungal development and pathogenicity, plant immunity, and ER-phagy in Magnaporthe oryzaeVirulence11, 1685–1700.

Xiao R, Wilkinson B, Solovyov A, Winther J R, Holmgren A, Lundstrom-Ljung J, Gilbert H F. 2004. The contributions of protein disulfide isomerase and its homologues to oxidative protein folding in the yeast endoplasmic reticulum. Journal of Biological Chemistry279, 49780–49786.

Yi M, Chi M H, Khang C H, Park S Y, Kang S, Valent B, Lee Y H. 2009. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzaePlant Cell21, 681–695.

Yin Z, Tang W, Wang J, Liu X, Yang L, Gao C, Zhang J, Zhang H, Zheng X, Wang P, Zhang Z. 2016. Phosphodiesterase MoPdeH targets MoMck1 of the conserved mitogen-activated protein (MAP) kinase signalling pathway to regulate cell wall integrity in rice blast fungus Magnaporthe oryzaeMolecular Plant Pathology17, 654–668.

Zhang H, Zheng X, Zhang Z. 2016. The Magnaporthe grisea species complex and plant pathogenesis. Molecular Plant Pathology17, 796–804.

Zhang S, Lin C, Zhou T, Zhang L H, Deng Y Z. 2019. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cellular Microbiology22, e13114.

Zhang S, Xu J R. 2014. Effectors and effector delivery in Magnaporthe oryzaePLoS Pathogens10, e1003826.

Zhou J, Wu Y, Wang L, Rauova L, Hayes V M, Poncz M, Essex D W. 2015. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis. Journal of Clinical Investigation125, 4391–4406.

Zhu C, Luo N, He M, Chen G, Zhu J, Yin G, Li X, Hu Y, Li J, Yan Y. 2014. Molecular characterization and expression profiling of the protein disulfide isomerase gene family in Brachypodium distachyon L. PLoS ONE9, e94704.

No related articles found!
No Suggested Reading articles found!