Ahad R, Zhou T, Lepp D, Pauls K P. 2017. Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins. BMC Biotechnology, 17, 30.
Akbari P, Braber S, Gremmels H, Koelink P J, Verheijden K A, Garssen J, Fink-Gremmels J. 2014. Deoxynivalenol: A trigger for intestinal integrity breakdown. FASEB Journal (Official Publication of the Federation of American Societies for Experimental Biology), 28, 2414–2429.
Akbari P, Braber S, Varasteh S, Alizadeh A, Garssen J, Fink-Gremmels J. 2017. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Archives of Toxicology, 91, 1007–1029.
Alassane-Kpembi I, Pinton P, Oswald I P. 2019. Effects of mycotoxins on the intestine. Toxins, 11, 159.
Alshannaq A, Yu J H. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health, 14, 632.
Ang S K, Yahya A, Abd Aziz S, Md Salleh M. 2015. Isolation, screening, and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemongrass leaves. Preparative Biochemistry & Biotechnology, 45, 279–305.
Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Janssens G P, De Baere S, Mountzouris K C, Su S, Wong E A, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal I, Martel A, Croubels S. 2015. Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. Journal of Agricultural and Food Chemistry, 63, 10846–10855.
Aoki Y, Ikeda T, Tani N, Watanabe M, Ishikawa T. 2021. Evaluation of the relationships between intestinal regional lymph nodes and immune responses in viral infections in children. International Journal of Molecular Sciences, 23, 318.
Bansil R, Turner B S. 2018. The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews, 124, 3–15.
Bastos-Amador P, Duarte E L, Torres J, Caldeira A T, Silva I, Salvador C, Assunção R, Alvito P, Ferreira M. 2023. Maternal dietary exposure to mycotoxin aflatoxin B(1) promotes intestinal immune alterations and microbiota modifications increasing infection susceptibility in mouse offspring. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 173, 113596.
Belasli A, Herrera M, Ariño A, Djenane D. 2023. Occurrence and exposure assessment of major mycotoxins in foodstuffs from algeria. Toxins, 15, 449.
Bergstrom K, Xia L. 2022. The barrier and beyond: Roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes, 14, 2052699.
Bertero A, Fossati P, Tedesco D E A, Caloni F. 2020. Beauvericin and enniatins: In vitro intestinal effects. Toxins, 12, 686.
Bertero A, Spicer L J, Caloni F. 2018. Fusarium mycotoxins and in vitro species-specific approach with porcine intestinal and brain in vitro barriers: A review. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 121, 666–675.
Bol-Schoenmakers M, Braber S, Akbari P, de Graaff P, van Roest M, Kruijssen L, Smit J J, van Esch B C, Jeurink P V, Garssen J, Fink-Gremmels J, Pieters R H. 2016. The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice. Mucosal Immunology, 9, 1477–1486.
Butnarasu C, Garbero O V, Petrini P, Visai L, Visentin S. 2023. Permeability assessment of a high-throughput mucosal platform. Pharmaceutics, 15, 380.
Caminero A, Guzman M, Libertucci J, Lomax A E. 2023. The emerging roles of bacterial proteases in intestinal diseases. Gut Microbes, 15, 2181922.
Cheat S, Pinton P, Cossalter A M, Cognie J, Vilariño M, Callu P, Raymond-Letron I, Oswald I P, Kolf-Clauw M. 2016. The mycotoxins deoxynivalenol and nivalenol show in vivo synergism on jejunum enterocytes apoptosis. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 87, 45–54.
Chen T, Li R, Chen P. 2021. Gut microbiota and chemical-induced acute liver injury. Frontiers in Physiology, 12, 688780.
Chen X, Ma J, Chen H. 2023. Induction of autophagy via the ROS-dependent AMPK/mTOR pathway protects deoxynivalenol exposure grass carp hepatocytes damage. Fish & Shellfish Immunology, 135, 108687.
Cimbalo A, Alonso-Garrido M, Font G, Manyes L. 2020. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 137, 111161.
Diesing A K, Nossol C, Dänicke S, Walk N, Post A, Kahlert S, Rothkötter H J, Kluess J. 2011a. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One, 6, e17472.
Diesing A K, Nossol C, Panther P, Walk N, Post A, Kluess J, Kreutzmann P, Dänicke S, Rothkötter H J, Kahlert S. 2011b. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicology Letters, 200, 8–18.
Djouina M, Waxin C, Caboche S, Lecointe K, Steimle A, Beury D, Desai M S, Hot D, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. 2023. Low dose dietary contamination with deoxynivalenol mycotoxin exacerbates enteritis and colorectal cancer in mice. The Science of the Total Environment, 900, 165722.
Doron I, Kusakabe T, Iliev I D. 2023. Immunoglobulins at the interface of the gut mycobiota and anti-fungal immunity. Seminars in Immunology, 67, 101757.
Drønen E K, Namork E, Dirven H, Nygaard U C. 2022. Suspected gut barrier disruptors and development of food allergy: Adjuvant effects and early immune responses. Frontiers in Allergy, 3, 1029125.
El-Nezami H S, Chrevatidis A, Auriola S, Salminen S, Mykkänen H. 2002. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants, 19, 680–686.
Engevik M A, Luk B, Chang-Graham A L, Hall A, Herrmann B, Ruan W, Endres B T, Shi Z, Garey K W, Hyser J M, Versalovic J. 2019. Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. mBio, 10, e01087–19.
Erazo J G, Palacios S A, Veliz N A, Del Canto A, Plem S, Ramirez M L, Torres A M. 2023. Effect of temperature, water activity and incubation time on trichothecene production by fusarium cerealis isolated from durum wheat grains. Pathogens (Basel, Switzerland), 12, 736.
Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele T V, Schüller S, Juge N, Blanquet-Diot S. 2019. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiology Reviews, 43, 457–489.
Feizollahi E, Roopesh M S. 2022. Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Critical Reviews in Food Science and Nutrition, 62, 5903–5924.
Fessler M B. 2016. The intracellular cholesterol landscape: Dynamic integrator of the immune response. Trends in Immunology, 37, 819–830.
Fu M M, Qu H Z, Lv Y Y, Cai J P, Hu Y S, Wang J S, Zhang B S. 2019. Isolation and characterization of pseudomonas aeruginosa with don degradation capacity and its application in detoxification of corn. Journal of Henan University of Technology, 40, 38–43. (in Chinese)
Fuchs E, Binder E, Heidler D, Krska R. 2000. Characterisation of metabolites after the microbial degradation of A- and B-trichothecenes by BBSH 797. Mycotoxin Research, 16 (Suppl, 1), 66–69.
Fuchs E, Binder E M, Heidler D, Krska R. 2002. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Additives and Contaminants, 19, 379–386.
Gamage H, Chong R W W, Bucio-Noble D, Kautto L, Hardikar A A, Ball M S, Molloy M P, Packer N H, Paulsen I T. 2020. Changes in dietary fiber intake in mice reveal associations between colonic mucin O-glycosylation and specific gut bacteria. Gut Microbes, 12, 1802209.
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology, 8, 13.
Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. 2018. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 112, 310–319.
Gao Y, Meng L, Liu H, Wang J, Zheng N. 2020. The compromised intestinal barrier induced by mycotoxins. Toxins, 12, 619.
Gao Z, Xu C, Fan H, Wang H, Wu Z, Wu S, Bao W. 2022. Analysis of RIOK2 functions in mediating the toxic effects of deoxynivalenol in porcine intestinal epithelial cells. International Journal of Molecular Sciences, 23, 12712.
Gómez de la Torre Canny S, Nordgård C T, Mathisen A J H, Degré Lorentsen E, Vadstein O, Bakke I. 2022. A novel gnotobiotic experimental system for Atlantic salmon (Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Frontiers in Cellular and Infection Microbiology, 12, 1068302.
Graziani F, Pinton P, Olleik H, Pujol A, Nicoletti C, Sicre M, Quinson N, Ajandouz E H, Perrier J, Pasquale E D, Oswald I P, Maresca M. 2019. Deoxynivalenol inhibits the expression of trefoil factors (TFF) by intestinal human and porcine goblet cells. Archives of Toxicology, 93, 1039–1049.
Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. 2022. Combinatory exposure to urolithin a, alternariol, and deoxynivalenol affects colon cancer metabolism and epithelial barrier integrity in vitro. Frontiers in Nutrition, 9, 882222.
Guo F, Wang F, Ma H, Ren Z, Yang X, Yang X. 2021. Study on the interactive effect of deoxynivalenol and Clostridium perfringens on the jejunal health of broiler chickens. Poultry Science, 100, 100807.
Guo H, Ji J, Wei K, Sun J, Zhang Y, Sun X. 2021. MAPK/AP-1 and ROS participated in ratio- and time-dependent interaction effects of deoxynivalenol and cadmium on HT-29 cells. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 148, 111921.
Han P, Yu Y, Zhang L, Ruan Z. 2023. Citrus peel ameliorates mucus barrier damage in HFD-fed mice. The Journal of Nutritional Biochemistry, 112, 109206.
Hassan Y I, He J W, Lepp D, Zhou T. 2019. Understanding the bacterial response to mycotoxins: The transcriptomic analysis of deoxynivalenol-induced changes in devosia mutans 17-2-E-8. Frontiers in Pharmacology, 10, 1098.
He W J, Zhang L, Yi S Y, Tang X L, Yuan Q S, Guo M W, Wu A B, Qu B, Li H P, Liao Y C. 2017. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Scientific Reports, 7, 9549.
Holanda D M, Kim S W. 2020. Efficacy of mycotoxin detoxifiers on health and growth of newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins, 12, 311.
Hu X, Li H, Yang J, Wen X, Wang S, Pan M. 2023. Nanoscale materials applying for the detection of mycotoxins in foods. Foods (Basel, Switzerland), 12, 3448.
Huang C, Feng L, Jiang W D, Wu P, Liu Y, Zeng Y Y, Jiang J, Kuang S Y, Tang L, Zhou X Q. 2019. Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 84, 470–484.
Huang C, Wu P, Jiang W D, Liu Y, Zeng Y Y, Jiang J, Kuang S Y, Tang L, Zhang Y A, Zhou X Q, Feng L. 2018. Deoxynivalenol decreased the growth performance and impaired intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology, 80, 376–391.
Islam R, Zhou T, Young J C, Goodwin P H, Pauls K P. 2012. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World Journal of Microbiology & Biotechnology, 28, 7–13.
Jia R, Cao L, Liu W, Shen Z. 2021. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. European Food Research and Technology, 247, 67–76.
Jia R, Liu W, Zhao L, Cao L, Shen Z. 2020. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicology Letters, 333, 159–169.
Johansson M E, Hansson G C. 2016. Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 16, 639–649.
Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution (Barking, Essex: 1987), 251, 689–698.
Kim Y S, Ho S B. 2010. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Current Gastroenterology Reports, 12, 319–330.
Kong C, Shin S Y, Kim B G. 2014. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. Springerplus, 3, 346.
Kozieł M J, Ziaja M, Piastowska-Ciesielska A W. 2021. Intestinal barrier, claudins and mycotoxins. Toxins, 13, 758.
Kraft S, Buchenauer L, Polte T. 2021. Mold, Mycotoxins and a dysregulated immune system: A combination of concern? International Journal of Molecular Sciences, 22, 12269.
Kuo W T, Zuo L, Odenwald M A, Madha S, Singh G, Gurniak C B, Abraham C, Turner J R. 2021. The Tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology, 161, 1924–1939.
Lessard M, Savard C, Deschene K, Lauzon K, Pinilla V A, Gagnon C A, Lapointe J, Guay F, Chorfi Y. 2015. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 80, 7–16.
Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik M, Gajęcki M. 2016. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed. Experimental and Toxicologic Pathology, 68, 157–166.
Li E, Horn N, Ajuwon K M. 2021. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Archives of Toxicology, 95, 2065–2079.
Li E, Li C, Horn N, Ajuwon K M. 2023a. PPARγ activation inhibits endocytosis of claudin-4 and protects against deoxynivalenol-induced intestinal barrier dysfunction in IPEC-J2 cells and weaned piglets. Toxicology Letters, 375, 8–20.
Li E, Li C, Horn N, Ajuwon K M. 2023b. Quercetin attenuates deoxynivalenol-induced intestinal barrier dysfunction by activation of Nrf2 signaling pathway in IPEC-J2 cells and weaned piglets. Current Research in Toxicology, 5, 100122.
Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. 2022. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 164, 113044.
Li R, Li Y, Su Y, Shen D, Dai P, Li C. 2018. Short-term ingestion of deoxynivalenol in naturally contaminated feed alters piglet performance and gut hormone secretion. Animal Science Journal, 89, 1134–1143.
Li X G, Zhu M, Chen M X, Fan H B, Fu H L, Zhou J Y, Zhai Z Y, Gao C Q, Yan H C, Wang X Q. 2019. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway. Toxicology Letters, 305, 19–31.
Ling K H, Wan M L, El-Nezami H, Wang M. 2016. Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation. Chemical Research in Toxicology, 29, 823–833.
Littleford-Colquhoun B L, Weyrich L S, Hohwieler K, Cristescu R, Frère C H. 2022. How microbiomes can help inform conservation: Landscape characterisation of gut microbiota helps shed light on additional population structure in a specialist folivore. Animal Microbiome, 4, 12.
Liu A, Yang Y, Guo J, Gao Y, Wu Q, Zhao L, Sun L H, Wang X. 2022. Cytochrome P450 enzymes mediated by DNA methylation is involved in deoxynivalenol-induced hepatoxicity in piglets. Animal Nutrition, 9, 269–279.
Liu M, Zhang L, Chu X H, Ma R, Wang Y W, Liu Q, Zhang N Y, Karrow N A, Sun L H. 2020. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food and Chemical Toxicology, 141, 111373.
Liu M, Zhang L, Mo Y, Li J, Yang J, Wang J, Karrow N A, Wu H, Sun L. 2023. Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. Journal of Animal Science and Biotechnology, 14, 29.
Luo S, Terciolo C, Bracarense A, Payros D, Pinton P, Oswald I P. 2019. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. Environment International, 132, 105082.
Manda G, Mocanu M A, Marin D E, Taranu I. 2015. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells. Toxins, 7, 593–603.
Maresca M. 2013. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins, 5, 784–820.
Martens E C, Neumann M, Desai M S. 2018. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nature Reviews Microbiology, 16, 457–470.
McDole J R, Wheeler L W, McDonald K G, Wang B, Konjufca V, Knoop K A, Newberry R D, Miller M J. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature, 483, 345–349.
Mcglade J. 2017. Nanomaterials: Applying the precautionary principle. In: UNEP (2017). Frontiers 2017 Emerging Issues of Environmental Concern. United Nations Environment Programme, Nairobi.
Meng X, Yu W, Duan N, Wang Z, Shen Y, Wu S. 2022. Protective effects of ferulic acid on deoxynivalenol-induced toxicity in IPEC-J2 cells. Toxins, 14, 275.
Milićević D, Petronijević R, Petrović Z, Đjinović-Stojanović J, Jovanović J, Baltić T, Janković S. 2019. Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia. Journal of the Science of Food and Agriculture, 99, 5202–5210.
Mishima Y, Ishihara S. 2020. Molecular mechanisms of microbiota-mediated pathology in irritable bowel syndrome. International Journal of Molecular Sciences, 21, 8664.
Moretta A, Scieuzo C, Petrone A M, Salvia R, Manniello M D, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. 2021. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology, 11, 668632.
Natividad J M, Verdu E F. 2013. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research, 69, 42–51.
Naz F, Verpoort F, Iqbal S Z, Naheed N, Asi M R. 2022. Seasonal variation of aflatoxin levels in selected spices available in retail markets: Estimation of exposure and risk assessment. Toxins, 14, 597.
Niderkorn V, Boudra H, Morgavi D P. 2006. Binding of fusarium mycotoxins by fermentative bacteria in vitro. Journal of Applied Microbiology, 101, 849–856.
Pajic P, Shen S, Qu J, May A J, Knox S, Ruhl S, Gokcumen O. 2022. A mechanism of gene evolution generating mucin function. Science Advances, 8, eabm8757.
Palacios S A, Erazo J G, Ciasca B, Lattanzio V M T, Reynoso M M, Farnochi M C, Torres A M. 2017. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chemistry, 230, 728–734.
Paone P, Cani P D. 2020. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut, 69, 2232–2243.
Park S H, Kim J, Kim D, Moon Y. 2017. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicology in Vitro, 38, 108–116.
Patel J J, Shukla A, Heyland D K. 2021. Enteral nutrition in septic shock: A pathophysiologic conundrum. Journal of Parenteral and Enteral Nutrition, 45, 74–78.
Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald I P. 2016. Toxicology of deoxynivalenol and its acetylated and modified forms. Archives of Toxicology, 90, 2931–2957.
Pellegrini C, Fornai M, D’Antongiovanni V, Antonioli L, Bernardini N, Derkinderen P. 2023. The intestinal barrier in disorders of the central nervous system. The Lancet Gastroenterology & Hepatology, 8, 66–80.
Perez-Lopez A, Behnsen J, Nuccio S P, Raffatellu M. 2016. Mucosal immunity to pathogenic intestinal bacteria. Nature Reviews Immunology, 16, 135–148.
Pestka J J. 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives & Contaminants (Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment), 25, 1128–1140.
Pestka J J. 2010a. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins, 2, 1300–1317.
Pestka J J. 2010b. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology, 84, 663–679.
Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. 2021. Updated review of the toxicity of selected fusarium toxins and their modified forms. Toxins, 13, 768.
Pinto A, De Pierri C R, Evangelista A G, Gomes A, Luciano F B. 2022. Deoxynivalenol: Toxicology, degradation by bacteria, and phylogenetic analysis. Toxins, 14, 90.
Pinton P, Graziani F, Pujol A, Nicoletti C, Paris O, Ernouf P, Di Pasquale E, Perrier J, Oswald I P, Maresca M. 2015. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β. Molecular Nutrition & Food Research, 59, 1076–1087.
Pinton P, Nougayrède J P, Del Rio J C, Moreno C, Marin D E, Ferrier L, Bracarense A P, Kolf-Clauw M, Oswald I P. 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology, 237, 41–48.
Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense A P, Kolf-Clauw M, Oswald I P. 2012. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicological Sciences (An Official Journal of the Society of Toxicology), 130, 180–190.
van der Post S, Jabbar K S, Birchenough G, Arike L, Akhtar N, Sjovall H, Johansson M E V, Hansson G C. 2019. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut, 68, 2142–2151.
Quaranta E, Bejarano M D, Comoglio C, Fuentes-Pérez J F, Pérez-Díaz J I, Sanz-Ronda F J, Schletterer M, Szabo-Meszaros M, Tuhtan J A. 2023. Digitalization and real-time control to mitigate environmental impacts of artificial barriers in rivers: Focus on hydropower systems and European priorities. The Science of the Total Environment, (875), 162489.
Ragoubi C, Quintieri L, Greco D, Mehrez A, Maatouk I, D’Ascanio V, Landoulsi A, Avantaggiato G. 2021. Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins, 13, 185.
Rajput S A, Shaukat A, Rajput I R, Kamboh A A, Iqbal Z, Saeed M, Akhtar R W, Shah S A H, Raza M A, El Askary A, Abdel-Daim M M, Mohammedsaleh Z M, Aljarai R M, Alamoudi M O, Alotaibi M A. 2021. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. Ecotoxicology and Environmental Safety, 220, 112333.
Recharla N, Park S, Kim M, Kim B, Jeong J Y. 2022. Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: A review. Journal of Animal Science and Technology, 64, 640–653.
Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L, Ma X, Fang J. 2015. Deoxynivalenol-induced cytokines and related genes in concanavalin A-stimulated primary chicken splenic lymphocytes. Toxicology in Vitro (An International Journal Published in Association with BIBRA), 29, 558–563.
Rutsch A, Kantsjö J B, Ronchi F. 2020. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Frontiers in Immunology, 11, 604179.
Saha K, Ganapathy A S, Wang A, Morris N M, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. 2022. Autophagy reduces the degradation and promotes membrane localization of occludin to enhance the intestinal epithelial tight junction barrier against paracellular macromolecule flux. Journal of Crohn’s & Colitis, 17, 433-449.
Schoultz I, Keita Å V. 2020. The intestinal barrier and current techniques for the assessment of gut permeability. Cells, 9, 1909.
Sierra M A, Li Q, Pushalkar S, Paul B, Sandoval T A, Kamer A R, Corby P, Guo Y, Ruff R R, Alekseyenko A V, Li X, Saxena D. 2020. The influences of bioinformatics tools and reference databases in analyzing the human oral microbial community. Genes, 11, 878.
Slack E, Balmer M L, Macpherson A J. 2014. B cells as a critical node in the microbiota-host immune system network. Immunological Reviews, 260, 50–66.
Slifer Z M, Blikslager A T. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. International Journal of Molecular Sciences, 21, 972.
Sultana M F, Abo H, Kawashima H. 2022. Human and mouse angiogenins: Emerging insights and potential opportunities. Frontiers in Microbiology, 13, 1022945.
Sun Y, Huang K, Long M, Yang S, Zhang Y. 2022a. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 163, 112895.
Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. 2022b. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Archives of Toxicology, 96, 2639–2654.
Sundheim L, Lillegaard I T, Fæste C K, Brantsæter A L, Brodal G, Eriksen G S. 2017. Deoxynivalenol exposure in norway, risk assessments for different human age groups. Toxins, 9, 46.
Suzuki T. 2020. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal = Nihon Chikusan Gakkaiho, 91, e13357.
Tang M, Yuan D, Liao P. 2021. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environmental Pollution (Barking, Essex: 1987), 289, 117865.
Tang Y, Li J, Li F, Hu C A, Liao P, Tan K, Tan B, Xiong X, Liu G, Li T, Yin Y. 2015. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radical Biology & Medicine, 89, 944–951.
Tassis P D, Reisinger N, Nagl V, Tzika E, Schatzmayr D, Mittas N, Basioura A, Michos I, Tsakmakidis I A. 2022. Comparative effects of deoxynivalenol, zearalenone and its modified forms de-epoxy-deoxynivalenol and hydrolyzed zearalenone on boar semen in vitro. Toxins, 14, 497.
Toranzos G A, Santiago-Rodriguez T M. 2021. Multiomics and health: A holistic approach to better understand the role of the microbiome. International Journal of Molecular Sciences, 22, 10786.
Wan L Y, Turner P C, El-Nezami H. 2013a. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 57, 276–283.
Wan L Y, Woo C S, Turner P C, Wan J M, El-Nezami H. 2013b. Individual and combined effects of Fusarium toxins on the mRNA expression of pro-inflammatory cytokines in swine jejunal epithelial cells. Toxicology Letters, 220, 238–246.
Wang F Y, Su M, Zheng Y Q, Wang X G, Kang N, Chen T, Zhu E L, Bian Z X, Tang X D. 2015. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome. Acta Pharmacologica Sinica, 36, 708–715.
Wang G, Wang Y, Ji F, Xu L, Yu M, Shi J, Xu J. 2019. Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chemistry, 276, 436–442.
Wang S, Hou Q, Guo Q, Zhang J, Sun Y, Wei H, Shen L. 2020. Isolation and characterization of a deoxynivalenol-degrading bacterium bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins, 12, 184.
Wang S, Wu K, Xue D, Zhang C, Rajput S A, Qi D. 2021. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 153, 112214.
Wei Y, Gao J, Kou Y, Meng L, Zheng X, Liang M, Sun H, Liu Z, Wang Y. 2020. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Applied and Environmental Microbiology, 86, e00303-20.
Wentzel J F, Lombard M J, Du Plessis L H, Zandberg L. 2017. Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Archives of Toxicology, 91, 2265–2282.
Wilson N M, McMaster N, Gantulga D, Soyars C, McCormick S P, Knott K, Senger R S, Schmale D G. 2017. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples. Toxins, 9, 141.
Wollenhaupt K, Tomek W, Tiemann U. 2007. Comparison of the molecular effects of the mycotoxins beta-zearalenol and deoxynivalenol in porcine endometrial cells - a review. Acta Veterinaria Hungarica, 55, 123–133.
Wu Q H, Wang X, Yang W, Nüssler A K, Xiong L Y, Kuča K, Dohnal V, Zhang X J, Yuan Z H. 2014. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Archives of Toxicology, 88, 1309–1326.
Xiao K, Liu C, Qin Q, Zhang Y, Wang X, Zhang J, Odle J, Lin X, Hu C A, Liu Y. 2020. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway. FASEB Journal, 34, 2483–2496.
Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, et al. 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nature Medicine, 25, 968–976.
Yan D, Zhou H R, Brooks K H, Pestka J J. 1998. Role of macrophages in elevated IgA and IL-6 production by Peyer’s patch cultures following acute oral vomitoxin exposure. Toxicology and Applied Pharmacology, 148, 261–273.
Yao Y, Long M. 2020. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology, 145, 111649.
Ying C, Hong W, Nianhui Z, Chunlei W, Kehe H, Cuiling P. 2019. Nontoxic concentrations of OTA aggravate DON-induced intestinal barrier dysfunction in IPEC-J2 cells via activation of NF-κB signaling pathway. Toxicology Letters, 311, 114–124.
Zeng C, Tan H. 2020. Gut Microbiota and heart, vascular injury. Advances in Experimental Medicine and Biology, 1238, 107–141.
Zhai Y, Hu S, Zhong L, Lu Z, Bie X, Zhao H, Zhang C, Lu F. 2019a. Characterization of deoxynivalenol detoxification by lactobacillus paracasei LHZ-1 isolated from yogurt. Journal of Food Protection, 82, 1292–1299.
Zhai Y, Zhong L, Gao H, Lu Z, Bie X, Zhao H, Zhang C, Lu F. 2019b. Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Frontiers in Microbiology, 10, 2172.
Zhang H, Deng X, Zhou C, Wu W, Zhang H. 2020. Deoxynivalenol induces inflammation in IPEC-J2 cells by activating P38 mapk and Erk1/2. Toxins, 12, 180.
Zhang J, You L, Wu W, Wang X, Chrienova Z, Nepovimova E, Wu Q, Kuca K. 2020. The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food and Chemical Toxicology, 145, 111676.
Zhang L, Ma R, Zhu M X, Zhang N Y, Liu X L, Wang Y W, Qin T, Zheng L Y, Liu Q, Zhang W P, Karrow N A, Sun L H. 2020. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food and Chemical Toxicology, 138, 111187.
Zhang Q Y, Yan Z B, Meng Y M, Hong X Y, Shao G, Ma J J, Cheng X R, Liu J, Kang J, Fu C Y. 2021. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research, 8, 48.
Zhou J Y, Wang Z, Zhang S W, Lin H L, Gao C Q, Zhao J C, Yang C, Wang X Q. 2019a. Methionine and its hydroxyl analogues improve stem cell activity to eliminate deoxynivalenol-induced intestinal injury by reactivating Wnt/β-Catenin signaling. Journal of Agricultural and Food Chemistry, 67, 11464–11473.
Zhou J Y, Zhang S W, Lin H L, Gao C Q, Yan H C, Wang X Q. 2019b. Hydrolyzed wheat gluten alleviates deoxynivalenol-induced intestinal injury by promoting intestinal stem cell proliferation and differentiation via upregulation of Wnt/β-catenin signaling in mice. Food and Chemical Toxicology, 131, 110579.
|