Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (8): 2507-2524    DOI: 10.1016/j.jia.2023.11.038
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review
Jia Chen*, Xinran Zhang*, Ziqi He, Dongwei Xiong, Miao Long#
Key Laboratory of Livestock Infectious Diseases, Ministry of Education/College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

脱氧雪腐镰刀菌烯醇(DON)是一种由多种镰刀菌产生的真菌毒素,广泛存在于食品和饲料中。低浓度时,它会导致动物和人类的代谢紊乱;高浓度时,会导致身体的病理变化。由于DON对人类/动物健康和动物生产力的影响,因此引起了全世界的广泛关注。DON会对肠道造成严重损伤,包括肠道屏障受损、粘膜损伤、免疫功能减弱和肠道微生物群组成改变。这些影响均加剧了牲畜和家禽的肠道感染和炎症,对机体的健康造成不利影响。此外,研究DON解毒的生物学方法是未来研究的重要途径,这包括使用吸附、酶降解和其他生物方法来减少DON的影响,这些方法为预防和治疗DON诱导的疾病提供了新的策略。DON未来的研究将更加侧重于识别DON的有效解毒微生物或酶,以降低食品和饲料中DON的水平,从而降低其对动物和人类健康的风险。



Abstract  
Deoxynivalenol (DON) is a mycotoxin that is produced by various species of Fusarium and is ubiquitous in food and feed.  At low concentrations, it can cause metabolic disorders in animals and humans and, at high concentrations, it can lead to pathological changes in the body.  The impact of DON on human/animal health and animal productivity has thus attracted a great deal of attention around the world.  DON causes severe damage to the intestine, including compromised intestinal barrier, mucosal damage, weakened immune function, and alterations in gut microbiota composition.  These effects exacerbate intestinal infections and inflammation in livestock and poultry, posing adverse effects on overall health.  Furthermore, research into biological methods for DON detoxification is a crucial avenue for future studies.  This includes the utilization of adsorption, enzymatic degradation, and other biological approaches to mitigate DON’s impact, offering new strategies for prevention and treatment of DON-induced diseases.  Future research will focus on identifying highly efficient detoxifying microorganisms or enzymes to reduce DON levels in food and feed, thereby mitigating its risks to both animals and human health.
Keywords:  deoxynivalenol (DON)       intestinal barrier function        mucus barrier       immune function        flora composition        biological detoxification  
Received: 11 April 2023   Accepted: 09 November 2023
Fund: 
This work was funded by the National Natural Science Foundation of China (32273074, 31972746, 31872538 and 31772809); the Basic Scientific Research Project of Liaoning Provincial Department of Education, China (LJKZ0632).
About author:  Jia Chen, E-mail: 2020200157@stu.syau.edu.cn; Xinran Zhang, E-mail: 2023220649@stu.syau.edu.cn; #Correspondence Miao Long, E-mail: longmiao@syau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jia Chen, Xinran Zhang, Ziqi He, Dongwei Xiong, Miao Long. 2024. Damage on intestinal barrier function and microbial detoxification of deoxynivalenol: A review. Journal of Integrative Agriculture, 23(8): 2507-2524.

Ahad R, Zhou T, Lepp D, Pauls K P. 2017. Microbial detoxification of eleven food and feed contaminating trichothecene mycotoxins. BMC Biotechnology17, 30.

Akbari P, Braber S, Gremmels H, Koelink P J, Verheijden K A, Garssen J, Fink-Gremmels J. 2014. Deoxynivalenol: A trigger for intestinal integrity breakdown. FASEB Journal (Official Publication of the Federation of American Societies for Experimental Biology), 28, 2414–2429.

Akbari P, Braber S, Varasteh S, Alizadeh A, Garssen J, Fink-Gremmels J. 2017. The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Archives of Toxicology91, 1007–1029.

Alassane-Kpembi I, Pinton P, Oswald I P. 2019. Effects of mycotoxins on the intestine. Toxins11, 159.

Alshannaq A, Yu J H. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health14, 632.

Ang S K, Yahya A, Abd Aziz S, Md Salleh M. 2015. Isolation, screening, and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemongrass leaves. Preparative Biochemistry & Biotechnology45, 279–305.

Antonissen G, Van Immerseel F, Pasmans F, Ducatelle R, Janssens G P, De Baere S, Mountzouris K C, Su S, Wong E A, De Meulenaer B, Verlinden M, Devreese M, Haesebrouck F, Novak B, Dohnal I, Martel A, Croubels S. 2015. Mycotoxins deoxynivalenol and fumonisins alter the extrinsic component of intestinal barrier in broiler chickens. Journal of Agricultural and Food Chemistry63, 10846–10855.

Aoki Y, Ikeda T, Tani N, Watanabe M, Ishikawa T. 2021. Evaluation of the relationships between intestinal regional lymph nodes and immune responses in viral infections in children. International Journal of Molecular Sciences23, 318.

Bansil R, Turner B S. 2018. The biology of mucus: Composition, synthesis and organization. Advanced Drug Delivery Reviews124, 3–15.

Bastos-Amador P, Duarte E L, Torres J, Caldeira A T, Silva I, Salvador C, Assunção R, Alvito P, Ferreira M. 2023. Maternal dietary exposure to mycotoxin aflatoxin B(1) promotes intestinal immune alterations and microbiota modifications increasing infection susceptibility in mouse offspring. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 173, 113596.

Belasli A, Herrera M, Ariño A, Djenane D. 2023. Occurrence and exposure assessment of major mycotoxins in foodstuffs from algeria. Toxins15, 449.

Bergstrom K, Xia L. 2022. The barrier and beyond: Roles of intestinal mucus and mucin-type O-glycosylation in resistance and tolerance defense strategies guiding host-microbe symbiosis. Gut Microbes14, 2052699.

Bertero A, Fossati P, Tedesco D E A, Caloni F. 2020. Beauvericin and enniatins: In vitro intestinal effects. Toxins12, 686.

Bertero A, Spicer L J, Caloni F. 2018. Fusarium mycotoxins and in vitro species-specific approach with porcine intestinal and brain in vitro barriers: A review. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 121, 666–675.

Bol-Schoenmakers M, Braber S, Akbari P, de Graaff P, van Roest M, Kruijssen L, Smit J J, van Esch B C, Jeurink P V, Garssen J, Fink-Gremmels J, Pieters R H. 2016. The mycotoxin deoxynivalenol facilitates allergic sensitization to whey in mice. Mucosal Immunology9, 1477–1486.

Butnarasu C, Garbero O V, Petrini P, Visai L, Visentin S. 2023. Permeability assessment of a high-throughput mucosal platform. Pharmaceutics15, 380.

Caminero A, Guzman M, Libertucci J, Lomax A E. 2023. The emerging roles of bacterial proteases in intestinal diseases. Gut Microbes15, 2181922.

Cheat S, Pinton P, Cossalter A M, Cognie J, Vilariño M, Callu P, Raymond-Letron I, Oswald I P, Kolf-Clauw M. 2016. The mycotoxins deoxynivalenol and nivalenol show in vivo synergism on jejunum enterocytes apoptosis. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 87, 45–54.

Chen T, Li R, Chen P. 2021. Gut microbiota and chemical-induced acute liver injury. Frontiers in Physiology12, 688780.

Chen X, Ma J, Chen H. 2023. Induction of autophagy via the ROS-dependent AMPK/mTOR pathway protects deoxynivalenol exposure grass carp hepatocytes damage. Fish & Shellfish Immunology135, 108687.

Cimbalo A, Alonso-Garrido M, Font G, Manyes L. 2020. Toxicity of mycotoxins in vivo on vertebrate organisms: A review. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 137, 111161.

Diesing A K, Nossol C, Dänicke S, Walk N, Post A, Kahlert S, Rothkötter H J, Kluess J. 2011a. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One6, e17472.

Diesing A K, Nossol C, Panther P, Walk N, Post A, Kluess J, Kreutzmann P, Dänicke S, Rothkötter H J, Kahlert S. 2011b. Mycotoxin deoxynivalenol (DON) mediates biphasic cellular response in intestinal porcine epithelial cell lines IPEC-1 and IPEC-J2. Toxicology Letters200, 8–18.

Djouina M, Waxin C, Caboche S, Lecointe K, Steimle A, Beury D, Desai M S, Hot D, Dubuquoy L, Launay D, Vignal C, Body-Malapel M. 2023. Low dose dietary contamination with deoxynivalenol mycotoxin exacerbates enteritis and colorectal cancer in mice. The Science of the Total Environment900, 165722.

Doron I, Kusakabe T, Iliev I D. 2023. Immunoglobulins at the interface of the gut mycobiota and anti-fungal immunity. Seminars in Immunology67, 101757.

Drønen E K, Namork E, Dirven H, Nygaard U C. 2022. Suspected gut barrier disruptors and development of food allergy: Adjuvant effects and early immune responses. Frontiers in Allergy3, 1029125.

El-Nezami H S, Chrevatidis A, Auriola S, Salminen S, Mykkänen H. 2002. Removal of common Fusarium toxins in vitro by strains of Lactobacillus and Propionibacterium. Food Additives and Contaminants19, 680–686.

Engevik M A, Luk B, Chang-Graham A L, Hall A, Herrmann B, Ruan W, Endres B T, Shi Z, Garey K W, Hyser J M, Versalovic J. 2019. Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. mBio10, e01087–19.

Erazo J G, Palacios S A, Veliz N A, Del Canto A, Plem S, Ramirez M L, Torres A M. 2023. Effect of temperature, water activity and incubation time on trichothecene production by fusarium cerealis isolated from durum wheat grains. Pathogens (Basel, Switzerland), 12, 736.

Etienne-Mesmin L, Chassaing B, Desvaux M, De Paepe K, Gresse R, Sauvaitre T, Forano E, de Wiele T V, Schüller S, Juge N, Blanquet-Diot S. 2019. Experimental models to study intestinal microbes–mucus interactions in health and disease. FEMS Microbiology Reviews43, 457–489.

Feizollahi E, Roopesh M S. 2022. Mechanisms of deoxynivalenol (DON) degradation during different treatments: A review. Critical Reviews in Food Science and Nutrition62, 5903–5924.

Fessler M B. 2016. The intracellular cholesterol landscape: Dynamic integrator of the immune response. Trends in Immunology37, 819–830.

Fu M M, Qu H Z, Lv Y Y, Cai J P, Hu Y S, Wang J S, Zhang B S. 2019. Isolation and characterization of pseudomonas aeruginosa with don degradation capacity and its application in detoxification of corn. Journal of Henan University of Technology40, 38–43. (in Chinese)

Fuchs E, Binder E, Heidler D, Krska R. 2000. Characterisation of metabolites after the microbial degradation of A- and B-trichothecenes by BBSH 797. Mycotoxin Research16 (Suppl, 1), 66–69.

Fuchs E, Binder E M, Heidler D, Krska R. 2002. Structural characterization of metabolites after the microbial degradation of type A trichothecenes by the bacterial strain BBSH 797. Food Additives and Contaminants19, 379–386.

Gamage H, Chong R W W, Bucio-Noble D, Kautto L, Hardikar A A, Ball M S, Molloy M P, Packer N H, Paulsen I T. 2020. Changes in dietary fiber intake in mice reveal associations between colonic mucin O-glycosylation and specific gut bacteria. Gut Microbes12, 1802209.

Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, Li T, Yin Y. 2018. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Frontiers in Cellular and Infection Microbiology8, 13.

Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. 2018. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 112, 310–319.

Gao Y, Meng L, Liu H, Wang J, Zheng N. 2020. The compromised intestinal barrier induced by mycotoxins. Toxins12, 619.

Gao Z, Xu C, Fan H, Wang H, Wu Z, Wu S, Bao W. 2022. Analysis of RIOK2 functions in mediating the toxic effects of deoxynivalenol in porcine intestinal epithelial cells. International Journal of Molecular Sciences23, 12712.

Gómez de la Torre Canny S, Nordgård C T, Mathisen A J H, Degré Lorentsen E, Vadstein O, Bakke I. 2022. A novel gnotobiotic experimental system for Atlantic salmon (Salmo salar L.) reveals a microbial influence on mucosal barrier function and adipose tissue accumulation during the yolk sac stage. Frontiers in Cellular and Infection Microbiology12, 1068302.

Graziani F, Pinton P, Olleik H, Pujol A, Nicoletti C, Sicre M, Quinson N, Ajandouz E H, Perrier J, Pasquale E D, Oswald I P, Maresca M. 2019. Deoxynivalenol inhibits the expression of trefoil factors (TFF) by intestinal human and porcine goblet cells. Archives of Toxicology93, 1039–1049.

Groestlinger J, Seidl C, Varga E, Del Favero G, Marko D. 2022. Combinatory exposure to urolithin a, alternariol, and deoxynivalenol affects colon cancer metabolism and epithelial barrier integrity in vitroFrontiers in Nutrition9, 882222.

Guo F, Wang F, Ma H, Ren Z, Yang X, Yang X. 2021. Study on the interactive effect of deoxynivalenol and Clostridium perfringens on the jejunal health of broiler chickens. Poultry Science100, 100807.

Guo H, Ji J, Wei K, Sun J, Zhang Y, Sun X. 2021. MAPK/AP-1 and ROS participated in ratio- and time-dependent interaction effects of deoxynivalenol and cadmium on HT-29 cells. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 148, 111921.

Han P, Yu Y, Zhang L, Ruan Z. 2023. Citrus peel ameliorates mucus barrier damage in HFD-fed mice. The Journal of Nutritional Biochemistry112, 109206.

Hassan Y I, He J W, Lepp D, Zhou T. 2019. Understanding the bacterial response to mycotoxins: The transcriptomic analysis of deoxynivalenol-induced changes in devosia mutans 17-2-E-8. Frontiers in Pharmacology10, 1098.

He W J, Zhang L, Yi S Y, Tang X L, Yuan Q S, Guo M W, Wu A B, Qu B, Li H P, Liao Y C. 2017. An aldo-keto reductase is responsible for Fusarium toxin-degrading activity in a soil Sphingomonas strain. Scientific Reports7, 9549.

Holanda D M, Kim S W. 2020. Efficacy of mycotoxin detoxifiers on health and growth of newly-weaned pigs under chronic dietary challenge of deoxynivalenol. Toxins12, 311.

Hu X, Li H, Yang J, Wen X, Wang S, Pan M. 2023. Nanoscale materials applying for the detection of mycotoxins in foods. Foods (Basel, Switzerland), 12, 3448.

Huang C, Feng L, Jiang W D, Wu P, Liu Y, Zeng Y Y, Jiang J, Kuang S Y, Tang L, Zhou X Q. 2019. Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology84, 470–484.

Huang C, Wu P, Jiang W D, Liu Y, Zeng Y Y, Jiang J, Kuang S Y, Tang L, Zhang Y A, Zhou X Q, Feng L. 2018. Deoxynivalenol decreased the growth performance and impaired intestinal physical barrier in juvenile grass carp (Ctenopharyngodon idella). Fish & Shellfish Immunology80, 376–391.

Islam R, Zhou T, Young J C, Goodwin P H, Pauls K P. 2012. Aerobic and anaerobic de-epoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil. World Journal of Microbiology & Biotechnology28, 7–13.

Jia R, Cao L, Liu W, Shen Z. 2021. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. European Food Research and Technology247, 67–76.

Jia R, Liu W, Zhao L, Cao L, Shen Z. 2020. Low doses of individual and combined deoxynivalenol and zearalenone in naturally moldy diets impair intestinal functions via inducing inflammation and disrupting epithelial barrier in the intestine of piglets. Toxicology Letters333, 159–169.

Johansson M E, Hansson G C. 2016. Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology16, 639–649.

Kang R, Li R, Dai P, Li Z, Li Y, Li C. 2019. Deoxynivalenol induced apoptosis and inflammation of IPEC-J2 cells by promoting ROS production. Environmental Pollution (Barking, Essex: 1987), 251, 689–698.

Kim Y S, Ho S B. 2010. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Current Gastroenterology Reports12, 319–330.

Kong C, Shin S Y, Kim B G. 2014. Evaluation of mycotoxin sequestering agents for aflatoxin and deoxynivalenol: An in vitro approach. Springerplus3, 346.

Kozieł M J, Ziaja M, Piastowska-Ciesielska A W. 2021. Intestinal barrier, claudins and mycotoxins. Toxins13, 758.

Kraft S, Buchenauer L, Polte T. 2021. Mold, Mycotoxins and a dysregulated immune system: A combination of concern? International Journal of Molecular Sciences22, 12269.

Kuo W T, Zuo L, Odenwald M A, Madha S, Singh G, Gurniak C B, Abraham C, Turner J R. 2021. The Tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology161, 1924–1939.

Lessard M, Savard C, Deschene K, Lauzon K, Pinilla V A, Gagnon C A, Lapointe J, Guay F, Chorfi Y. 2015. Impact of deoxynivalenol (DON) contaminated feed on intestinal integrity and immune response in swine. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 80, 7–16.

Lewczuk B, Przybylska-Gornowicz B, Gajęcka M, Targońska K, Ziółkowska N, Prusik M, Gajęcki M. 2016. Histological structure of duodenum in gilts receiving low doses of zearalenone and deoxynivalenol in feed. Experimental and Toxicologic Pathology68, 157–166.

Li E, Horn N, Ajuwon K M. 2021. Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Archives of Toxicology95, 2065–2079.

Li E, Li C, Horn N, Ajuwon K M. 2023a. PPARγ activation inhibits endocytosis of claudin-4 and protects against deoxynivalenol-induced intestinal barrier dysfunction in IPEC-J2 cells and weaned piglets. Toxicology Letters375, 8–20.

Li E, Li C, Horn N, Ajuwon K M. 2023b. Quercetin attenuates deoxynivalenol-induced intestinal barrier dysfunction by activation of Nrf2 signaling pathway in IPEC-J2 cells and weaned piglets. Current Research in Toxicology5, 100122.

Li J, Wang Y, Deng Y, Wang X, Wu W, Nepovimova E, Wu Q, Kuca K. 2022. Toxic mechanisms of the trichothecenes T-2 toxin and deoxynivalenol on protein synthesis. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 164, 113044.

Li R, Li Y, Su Y, Shen D, Dai P, Li C. 2018. Short-term ingestion of deoxynivalenol in naturally contaminated feed alters piglet performance and gut hormone secretion. Animal Science Journal89, 1134–1143.

Li X G, Zhu M, Chen M X, Fan H B, Fu H L, Zhou J Y, Zhai Z Y, Gao C Q, Yan H C, Wang X Q. 2019. Acute exposure to deoxynivalenol inhibits porcine enteroid activity via suppression of the Wnt/β-catenin pathway. Toxicology Letters305, 19–31.

Ling K H, Wan M L, El-Nezami H, Wang M. 2016. Protective capacity of resveratrol, a natural polyphenolic compound, against deoxynivalenol-induced intestinal barrier dysfunction and bacterial translocation. Chemical Research in Toxicology29, 823–833.

Littleford-Colquhoun B L, Weyrich L S, Hohwieler K, Cristescu R, Frère C H. 2022. How microbiomes can help inform conservation: Landscape characterisation of gut microbiota helps shed light on additional population structure in a specialist folivore. Animal Microbiome4, 12.

Liu A, Yang Y, Guo J, Gao Y, Wu Q, Zhao L, Sun L H, Wang X. 2022. Cytochrome P450 enzymes mediated by DNA methylation is involved in deoxynivalenol-induced hepatoxicity in piglets. Animal Nutrition9, 269–279.

Liu M, Zhang L, Chu X H, Ma R, Wang Y W, Liu Q, Zhang N Y, Karrow N A, Sun L H. 2020. Effects of deoxynivalenol on the porcine growth performance and intestinal microbiota and potential remediation by a modified HSCAS binder. Food and Chemical Toxicology141, 111373.

Liu M, Zhang L, Mo Y, Li J, Yang J, Wang J, Karrow N A, Wu H, Sun L. 2023. Ferroptosis is involved in deoxynivalenol-induced intestinal damage in pigs. Journal of Animal Science and Biotechnology14, 29.

Luo S, Terciolo C, Bracarense A, Payros D, Pinton P, Oswald I P. 2019. In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. Environment International132, 105082.

Manda G, Mocanu M A, Marin D E, Taranu I. 2015. Dual effects exerted in vitro by micromolar concentrations of deoxynivalenol on undifferentiated caco-2 cells. Toxins7, 593–603.

Maresca M. 2013. From the gut to the brain: Journey and pathophysiological effects of the food-associated trichothecene mycotoxin deoxynivalenol. Toxins5, 784–820.

Martens E C, Neumann M, Desai M S. 2018. Interactions of commensal and pathogenic microorganisms with the intestinal mucosal barrier. Nature Reviews Microbiology16, 457–470.

McDole J R, Wheeler L W, McDonald K G, Wang B, Konjufca V, Knoop K A, Newberry R D, Miller M J. 2012. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature483, 345–349.

Mcglade J. 2017. Nanomaterials: Applying the precautionary principle. In: UNEP (2017). Frontiers 2017 Emerging Issues of Environmental Concern. United Nations Environment Programme, Nairobi.

Meng X, Yu W, Duan N, Wang Z, Shen Y, Wu S. 2022. Protective effects of ferulic acid on deoxynivalenol-induced toxicity in IPEC-J2 cells. Toxins14, 275.

Milićević D, Petronijević R, Petrović Z, Đjinović-Stojanović J, Jovanović J, Baltić T, Janković S. 2019. Impact of climate change on aflatoxin M1 contamination of raw milk with special focus on climate conditions in Serbia. Journal of the Science of Food and Agriculture99, 5202–5210.

Mishima Y, Ishihara S. 2020. Molecular mechanisms of microbiota-mediated pathology in irritable bowel syndrome. International Journal of Molecular Sciences21, 8664.

Moretta A, Scieuzo C, Petrone A M, Salvia R, Manniello M D, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. 2021. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology11, 668632.

Natividad J M, Verdu E F. 2013. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacological Research69, 42–51.

Naz F, Verpoort F, Iqbal S Z, Naheed N, Asi M R. 2022. Seasonal variation of aflatoxin levels in selected spices available in retail markets: Estimation of exposure and risk assessment. Toxins14, 597.

Niderkorn V, Boudra H, Morgavi D P. 2006. Binding of fusarium mycotoxins by fermentative bacteria in vitroJournal of Applied Microbiology101, 849–856.

Pajic P, Shen S, Qu J, May A J, Knox S, Ruhl S, Gokcumen O. 2022. A mechanism of gene evolution generating mucin function. Science Advances8, eabm8757.

Palacios S A, Erazo J G, Ciasca B, Lattanzio V M T, Reynoso M M, Farnochi M C, Torres A M. 2017. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chemistry230, 728–734.

Paone P, Cani P D. 2020. Mucus barrier, mucins and gut microbiota: The expected slimy partners? Gut69, 2232–2243.

Park S H, Kim J, Kim D, Moon Y. 2017. Mycotoxin detoxifiers attenuate deoxynivalenol-induced pro-inflammatory barrier insult in porcine enterocytes as an in vitro evaluation model of feed mycotoxin reduction. Toxicology in Vitro38, 108–116.

Patel J J, Shukla A, Heyland D K. 2021. Enteral nutrition in septic shock: A pathophysiologic conundrum. Journal of Parenteral and Enteral Nutrition45, 74–78.

Payros D, Alassane-Kpembi I, Pierron A, Loiseau N, Pinton P, Oswald I P. 2016. Toxicology of deoxynivalenol and its acetylated and modified forms. Archives of Toxicology90, 2931–2957.

Pellegrini C, Fornai M, D’Antongiovanni V, Antonioli L, Bernardini N, Derkinderen P. 2023. The intestinal barrier in disorders of the central nervous system. The Lancet Gastroenterology & Hepatology8, 66–80.

Perez-Lopez A, Behnsen J, Nuccio S P, Raffatellu M. 2016. Mucosal immunity to pathogenic intestinal bacteria. Nature Reviews Immunology16, 135–148.

Pestka J J. 2008. Mechanisms of deoxynivalenol-induced gene expression and apoptosis. Food Additives & Contaminants (Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment), 25, 1128–1140.

Pestka J J. 2010a. Deoxynivalenol-induced proinflammatory gene expression: Mechanisms and pathological sequelae. Toxins2, 1300–1317.

Pestka J J. 2010b. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology84, 663–679.

Pierzgalski A, Bryła M, Kanabus J, Modrzewska M, Podolska G. 2021. Updated review of the toxicity of selected fusarium toxins and their modified forms. Toxins13, 768.

Pinto A, De Pierri C R, Evangelista A G, Gomes A, Luciano F B. 2022. Deoxynivalenol: Toxicology, degradation by bacteria, and phylogenetic analysis. Toxins14, 90.

Pinton P, Graziani F, Pujol A, Nicoletti C, Paris O, Ernouf P, Di Pasquale E, Perrier J, Oswald I P, Maresca M. 2015. Deoxynivalenol inhibits the expression by goblet cells of intestinal mucins through a PKR and MAP kinase dependent repression of the resistin-like molecule β. Molecular Nutrition & Food Research59, 1076–1087.

Pinton P, Nougayrède J P, Del Rio J C, Moreno C, Marin D E, Ferrier L, Bracarense A P, Kolf-Clauw M, Oswald I P. 2009. The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology237, 41–48.

Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, Grosjean F, Bracarense A P, Kolf-Clauw M, Oswald I P. 2012. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicological Sciences (An Official Journal of the Society of Toxicology), 130, 180–190.

van der Post S, Jabbar K S, Birchenough G, Arike L, Akhtar N, Sjovall H, Johansson M E V, Hansson G C. 2019. Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut68, 2142–2151.

Quaranta E, Bejarano M D, Comoglio C, Fuentes-Pérez J F, Pérez-Díaz J I, Sanz-Ronda F J, Schletterer M, Szabo-Meszaros M, Tuhtan J A. 2023. Digitalization and real-time control to mitigate environmental impacts of artificial barriers in rivers: Focus on hydropower systems and European priorities. The Science of the Total Environment, (875), 162489.

Ragoubi C, Quintieri L, Greco D, Mehrez A, Maatouk I, D’Ascanio V, Landoulsi A, Avantaggiato G. 2021. Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins13, 185.

Rajput S A, Shaukat A, Rajput I R, Kamboh A A, Iqbal Z, Saeed M, Akhtar R W, Shah S A H, Raza M A, El Askary A, Abdel-Daim M M, Mohammedsaleh Z M, Aljarai R M, Alamoudi M O, Alotaibi M A. 2021. Ginsenoside Rb1 prevents deoxynivalenol-induced immune injury via alleviating oxidative stress and apoptosis in mice. Ecotoxicology and Environmental Safety220, 112333.

Recharla N, Park S, Kim M, Kim B, Jeong J Y. 2022. Protective effects of biological feed additives on gut microbiota and the health of pigs exposed to deoxynivalenol: A review. Journal of Animal Science and Technology64, 640–653.

Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, Wang Y, Peng X, Cui H, Shen L, Ma X, Fang J. 2015. Deoxynivalenol-induced cytokines and related genes in concanavalin A-stimulated primary chicken splenic lymphocytes. Toxicology in Vitro (An International Journal Published in Association with BIBRA), 29, 558–563.

Rutsch A, Kantsjö J B, Ronchi F. 2020. The gut-brain axis: How microbiota and host inflammasome influence brain physiology and pathology. Frontiers in Immunology11, 604179.

Saha K, Ganapathy A S, Wang A, Morris N M, Suchanec E, Ding W, Yochum G, Koltun W, Nighot M, Ma T, Nighot P. 2022. Autophagy reduces the degradation and promotes membrane localization of occludin to enhance the intestinal epithelial tight junction barrier against paracellular macromolecule flux. Journal of Crohn’s & Colitis17, 433-449.

Schoultz I, Keita Å V. 2020. The intestinal barrier and current techniques for the assessment of gut permeability. Cells9, 1909.

Sierra M A, Li Q, Pushalkar S, Paul B, Sandoval T A, Kamer A R, Corby P, Guo Y, Ruff R R, Alekseyenko A V, Li X, Saxena D. 2020. The influences of bioinformatics tools and reference databases in analyzing the human oral microbial community. Genes11, 878.

Slack E, Balmer M L, Macpherson A J. 2014. B cells as a critical node in the microbiota-host immune system network. Immunological Reviews260, 50–66.

Slifer Z M, Blikslager A T. 2020. The integral role of tight junction proteins in the repair of injured intestinal epithelium. International Journal of Molecular Sciences21, 972.

Sultana M F, Abo H, Kawashima H. 2022. Human and mouse angiogenins: Emerging insights and potential opportunities. Frontiers in Microbiology13, 1022945.

Sun Y, Huang K, Long M, Yang S, Zhang Y. 2022a. An update on immunotoxicity and mechanisms of action of six environmental mycotoxins. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 163, 112895.

Sun Y, Jiang J, Mu P, Lin R, Wen J, Deng Y. 2022b. Toxicokinetics and metabolism of deoxynivalenol in animals and humans. Archives of Toxicology96, 2639–2654.

Sundheim L, Lillegaard I T, Fæste C K, Brantsæter A L, Brodal G, Eriksen G S. 2017. Deoxynivalenol exposure in norway, risk assessments for different human age groups. Toxins9, 46.

Suzuki T. 2020. Regulation of the intestinal barrier by nutrients: The role of tight junctions. Animal Science Journal = Nihon Chikusan Gakkaiho91, e13357.

Tang M, Yuan D, Liao P. 2021. Berberine improves intestinal barrier function and reduces inflammation, immunosuppression, and oxidative stress by regulating the NF-κB/MAPK signaling pathway in deoxynivalenol-challenged piglets. Environmental Pollution (Barking, Essex: 1987), 289, 117865.

Tang Y, Li J, Li F, Hu C A, Liao P, Tan K, Tan B, Xiong X, Liu G, Li T, Yin Y. 2015. Autophagy protects intestinal epithelial cells against deoxynivalenol toxicity by alleviating oxidative stress via IKK signaling pathway. Free Radical Biology & Medicine89, 944–951.

Tassis P D, Reisinger N, Nagl V, Tzika E, Schatzmayr D, Mittas N, Basioura A, Michos I, Tsakmakidis I A. 2022. Comparative effects of deoxynivalenol, zearalenone and its modified forms de-epoxy-deoxynivalenol and hydrolyzed zearalenone on boar semen in vitroToxins14, 497.

Toranzos G A, Santiago-Rodriguez T M. 2021. Multiomics and health: A holistic approach to better understand the role of the microbiome. International Journal of Molecular Sciences22, 10786.

Wan L Y, Turner P C, El-Nezami H. 2013a. Individual and combined cytotoxic effects of Fusarium toxins (deoxynivalenol, nivalenol, zearalenone and fumonisins B1) on swine jejunal epithelial cells. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 57, 276–283.

Wan L Y, Woo C S, Turner P C, Wan J M, El-Nezami H. 2013b. Individual and combined effects of Fusarium toxins on the mRNA expression of pro-inflammatory cytokines in swine jejunal epithelial cells. Toxicology Letters220, 238–246.

Wang F Y, Su M, Zheng Y Q, Wang X G, Kang N, Chen T, Zhu E L, Bian Z X, Tang X D. 2015. Herbal prescription Chang'an II repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome. Acta Pharmacologica Sinica36, 708–715.

Wang G, Wang Y, Ji F, Xu L, Yu M, Shi J, Xu J. 2019. Biodegradation of deoxynivalenol and its derivatives by Devosia insulae A16. Food Chemistry276, 436–442.

Wang S, Hou Q, Guo Q, Zhang J, Sun Y, Wei H, Shen L. 2020. Isolation and characterization of a deoxynivalenol-degrading bacterium bacillus licheniformis YB9 with the capability of modulating intestinal microbial flora of mice. Toxins12, 184.

Wang S, Wu K, Xue D, Zhang C, Rajput S A, Qi D. 2021. Mechanism of deoxynivalenol mediated gastrointestinal toxicity: Insights from mitochondrial dysfunction. Food and Chemical Toxicology (An International Journal Published for the British Industrial Biological Research Association), 153, 112214.

Wei Y, Gao J, Kou Y, Meng L, Zheng X, Liang M, Sun H, Liu Z, Wang Y. 2020. Commensal bacteria impact a protozoan’s integration into the murine gut microbiota in a dietary nutrient-dependent manner. Applied and Environmental Microbiology86, e00303-20.

Wentzel J F, Lombard M J, Du Plessis L H, Zandberg L. 2017. Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Archives of Toxicology91, 2265–2282.

Wilson N M, McMaster N, Gantulga D, Soyars C, McCormick S P, Knott K, Senger R S, Schmale D G. 2017. Modification of the mycotoxin deoxynivalenol using microorganisms isolated from environmental samples. Toxins9, 141.

Wollenhaupt K, Tomek W, Tiemann U. 2007. Comparison of the molecular effects of the mycotoxins beta-zearalenol and deoxynivalenol in porcine endometrial cells - a review. Acta Veterinaria Hungarica55, 123–133.

Wu Q H, Wang X, Yang W, Nüssler A K, Xiong L Y, Kuča K, Dohnal V, Zhang X J, Yuan Z H. 2014. Oxidative stress-mediated cytotoxicity and metabolism of T-2 toxin and deoxynivalenol in animals and humans: An update. Archives of Toxicology88, 1309–1326.

Xiao K, Liu C, Qin Q, Zhang Y, Wang X, Zhang J, Odle J, Lin X, Hu C A, Liu Y. 2020. EPA and DHA attenuate deoxynivalenol-induced intestinal porcine epithelial cell injury and protect barrier function integrity by inhibiting necroptosis signaling pathway. FASEB Journal34, 2483–2496.

Yachida S, Mizutani S, Shiroma H, Shiba S, Nakajima T, Sakamoto T, Watanabe H, Masuda K, Nishimoto Y, Kubo M, Hosoda F, Rokutan H, Matsumoto M, Takamaru H, Yamada M, Matsuda T, Iwasaki M, Yamaji T, Yachida T, Soga T, et al. 2019. Metagenomic and metabolomic analyses reveal distinct stage-specific phenotypes of the gut microbiota in colorectal cancer. Nature Medicine25, 968–976.

Yan D, Zhou H R, Brooks K H, Pestka J J. 1998. Role of macrophages in elevated IgA and IL-6 production by Peyer’s patch cultures following acute oral vomitoxin exposure. Toxicology and Applied Pharmacology148, 261–273.

Yao Y, Long M. 2020. The biological detoxification of deoxynivalenol: A review. Food and Chemical Toxicology145, 111649.

Ying C, Hong W, Nianhui Z, Chunlei W, Kehe H, Cuiling P. 2019. Nontoxic concentrations of OTA aggravate DON-induced intestinal barrier dysfunction in IPEC-J2 cells via activation of NF-κB signaling pathway. Toxicology Letters311, 114–124.

Zeng C, Tan H. 2020. Gut Microbiota and heart, vascular injury. Advances in Experimental Medicine and Biology1238, 107–141.

Zhai Y, Hu S, Zhong L, Lu Z, Bie X, Zhao H, Zhang C, Lu F. 2019a. Characterization of deoxynivalenol detoxification by lactobacillus paracasei LHZ-1 isolated from yogurt. Journal of Food Protection82, 1292–1299.

Zhai Y, Zhong L, Gao H, Lu Z, Bie X, Zhao H, Zhang C, Lu F. 2019b. Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Frontiers in Microbiology10, 2172.

Zhang H, Deng X, Zhou C, Wu W, Zhang H. 2020. Deoxynivalenol induces inflammation in IPEC-J2 cells by activating P38 mapk and Erk1/2. Toxins12, 180.

Zhang J, You L, Wu W, Wang X, Chrienova Z, Nepovimova E, Wu Q, Kuca K. 2020. The neurotoxicity of trichothecenes T-2 toxin and deoxynivalenol (DON): Current status and future perspectives. Food and Chemical Toxicology145, 111676.

Zhang L, Ma R, Zhu M X, Zhang N Y, Liu X L, Wang Y W, Qin T, Zheng L Y, Liu Q, Zhang W P, Karrow N A, Sun L H. 2020. Effect of deoxynivalenol on the porcine acquired immune response and potential remediation by a novel modified HSCAS adsorbent. Food and Chemical Toxicology138, 111187.

Zhang Q Y, Yan Z B, Meng Y M, Hong X Y, Shao G, Ma J J, Cheng X R, Liu J, Kang J, Fu C Y. 2021. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Military Medical Research8, 48.

Zhou J Y, Wang Z, Zhang S W, Lin H L, Gao C Q, Zhao J C, Yang C, Wang X Q. 2019a. Methionine and its hydroxyl analogues improve stem cell activity to eliminate deoxynivalenol-induced intestinal injury by reactivating Wnt/β-Catenin signaling. Journal of Agricultural and Food Chemistry67, 11464–11473.

Zhou J Y, Zhang S W, Lin H L, Gao C Q, Yan H C, Wang X Q. 2019b. Hydrolyzed wheat gluten alleviates deoxynivalenol-induced intestinal injury by promoting intestinal stem cell proliferation and differentiation via upregulation of Wnt/β-catenin signaling in mice. Food and Chemical Toxicology131, 110579.

No related articles found!
No Suggested Reading articles found!