Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 3066-3077    DOI: 10.1016/j.jia.2023.11.047
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
A unique role of the pyrimidine de novo synthesis enzyme ODCase in Lysobacter enzymogenes
Mingming Yang1, 2, Yunxiao Tan2, Jiabing Ma2, Yingjia Zhao3, Xia Yan4, Nana Wang3, Pingping Wang5, Jiaqi Tan5, Suilong Ai5, Xiaofei Liang2, Bangshuai Chang3, Obadah E. A. Yousif3, Chao Zhao2, Bo Wang6, Guoliang Qian7, Lili Huang1, 2#

1 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, China

2 College of Plant Protection, Northwest A&F University, Yangling 712100, China

3 College of Life Sciences, Northwest A&F University, Yangling 712100, China

4 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China

5 Shaanxi Provincial Tobacco Corporation of China National Tobacco Corporation, Xi’an 710061, China

6 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China

7 College of Plant Protection, Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

产酶溶杆菌Lysobacter enzymogenes)OH11分泌的热稳定抗真菌因子HSAF具有广谱高效的抑菌活性。目前无法利用化学合成和异源表达等方法生产HSAFOH11菌株中HSAF原始产量低,是规模化生产的主要瓶颈从分子层面阐明HSAF生物合成的调控网络可为提升活性代谢物产量,研发绿色高效的新型生防产品奠定理论基础。本研究发现一个编码乳清酸核苷-5'-单磷酸脱羧酶(ODCase的基因Le0752,该基因在尿嘧啶从头合成途径中催化乳清酸核苷酸(OMP)生成尿嘧啶核苷酸(UMP)。Le0752缺失突变株的HSAF产量及其发酵粗提液对辣椒疫霉(Phytophthora capsici)的皿内抑菌活性均显著降低,而用Le0752缺失突变体发酵液处理过的辣椒疫霉对本氏烟(Nicotiana benthamiana)的毒力较野生型显著提高。Le0752突变体在1/10 TSA平板上生长减缓,但蹭行运动(twitching motility)能力不受影响。qRT-PCR结果表明,Le0752缺失突变后HSAF合成键基因lafB及其关键调控因子clp的基因表达水平显著降低,遗传学试验证明Le0752通过转录因子Clp调控lafB的转录进而影响HSAF的生物合成。生物信息学分析显示,溶杆菌属中的ODCases归于Group III类群,而与溶杆菌属亲缘关系较近的黄单胞菌属和寡养单胞菌属的ODCases归属Group I类群。基因染色体同源替换实验中,稻黄单胞菌水稻致病变种(Xanthomonas oryzae pv. oryzae)中的ODCase(pyrF)能够完全恢复Le0752缺失突变表型。本研究阐明尿嘧啶从头合成酶ODCaseHSAF合成关键调控作用将为改造HSAF高产菌株提供理论支撑,并拓展对细菌ODCase功能与进化的认识



Abstract  
Bacterial species of the genus Lysobacter are environmentally ubiquitous with strong antifungal biocontrol potential.  Heat-stable antifungal factor (HSAF) secreted by the biocontrol bacterium Lysobacter enzymogenes OH11 has broad-spectrum and highly efficient antifungal activity.  Studying the biosynthetic regulations of HSAF would lay an important foundation for strain engineering toward improved HSAF production.  In this work, we demonstrate that Le0752, an orotidine-5´-phosphate decarboxylase enzyme (ODCase) catalyzing a pivotal step of the UMP de novo biosynthesis pathway, is vital for HSAF-mediated antimicrobial activities and growth of Lenzymogenes OH11, but not for twitching motility.  This gene regulates the production of HSAF by affecting the expression of lafB, a key gene in the HSAF biosynthesis operon, through the transcription factor Clp.  Interestingly, bioinformatics analysis revealed that Le0752 belongs to the Group III ODCases, whereas its homologs in the closely related genera Xanthomonas and Stenotrophomonas belong to Group I, which contains most ODCases from Gram-positive bacteria, Gram-negative bacteria and cyanobacteria.  Moreover, the Group I ODCase PXO_3614 from the Xanthomonas oryzae pv.  oryzae PXO99A strain complemented the Le0752 mutant in regulating HSAF-mediated antagonistic activity.  Together, these results highlight the important requirement of de novo pyrimidine biosynthetic enzymes for antibiotic HSAF production in Lenzymogenes, which lays an important foundation for improving HSAF production via metabolic flow design and for dissecting the regulatory functions of bacterial ODCases.
Keywords:  ODCase       Pyrimidine de novo synthesis       Secondary metabolite HSAF       Lysobacter enzymogenes  
Received: 16 July 2023   Accepted: 17 October 2023
Fund: 
This study was supported by the National Natural Science Foundation of China (32102283 to Mingming Yang), the Science and Technology Major Project of China National Tobacco Corporation (110202101056(LS-16)), the Science and Technology Project of Shaanxi Branch of China National Tobacco Corporation (KJ-2021-02 and KJ-2022-04).
About author:  Mingming Yang, E-mail: yangming862@126.com; #Correspondence Lili Huang, Tel: +86-29-87091312, E-mail: huanglili@nwsuaf.edu.cn

Cite this article: 

Mingming Yang, Yunxiao Tan, Jiabing Ma, Yingjia Zhao, Xia Yan, Nana Wang, Pingping Wang, Jiaqi Tan, Suilong Ai, Xiaofei Liang, Bangshuai Chang, Obadah E. A. Yousif, Chao Zhao, Bo Wang, Guoliang Qian, Lili Huang. 2024. A unique role of the pyrimidine de novo synthesis enzyme ODCase in Lysobacter enzymogenes. Journal of Integrative Agriculture, 23(9): 3066-3077.

Al Ahmar R, Kirby D B, Yu D H. 2019. Pyrimidine biosynthesis regulates the small-colony variant and mucoidy in Pseudomonas aeruginosa through sigma factor competition. Journal of Bacteriology201, e00575-18.

Banerjee S, van der Heijden M G A. 2023. Soil microbiomes and one health. Nature Reviews Microbiology21, 6–20.

Becker P, Dohmann A, Wohlbrand L, Thies D, Hinrichs C, Buschen R, Wunsch D, Neumann-Schaal M, Schomburg D, Winklhofer M, Reinhardt R, Rabus R. 2022. Complex and flexible catabolism in Aromatoleum aromaticum pCyN1. Environmental Microbiology24, 3195–3211.

Boeke J D, LaCroute F, Fink G R. 1984. A positive selection for mutants lacking orotidine-5´-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular Genetics and Genomics197, 345–346.

de Bruijn I, Cheng X, de Jager V, Exposito R G, Watrous J, Patel N, Postma J, Dorrestein P C, Kobayashi D, Raaijmakers J M. 2015. Comparative genomics and metabolic profiling of the genus LysobacterBMC Genomics16, 991.

Capone R F, Ning Y, Pakulis N, Alhazzazi T, Fenno J C. 2007. Characterization of Treponema denticola pyrF encoding orotidine-5´-monophosphate decarboxylase. FEMS Microbiology Letters268, 261–267.

Chen J, Shen D, Odhiambo B O, Xu D, Han S, Chou S H, Qian G. 2018. Two direct gene targets contribute to Clp-dependent regulation of type IV pilus-mediated twitching motility in Lysobacter enzymogenes OH11. Applied Microbiology Biotechnology102, 7509–7519.

Dunne C, Moënne-Loccoz Y, de Bruijn J, O’Gara F. 2000. Overproduction of an inducible extracellular serine protease improves biological control of Pythium ultimum by Stenotrophomonas maltophilia strain W81. Microbiology146, 2069–2078.

Edgar R C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research32, 1792–1797.

Fujihashi M, Mnpotra J S, Mishra R K, Pai E F, Kotra L P. 2015. Orotidine monophosphate decarboxylase - A fascinating workhorse enzyme with therapeutic potential. Journal of Genetics and Genomics42, 221–234.

Galvao T C, de Lorenzo V. 2005. Adaptation of the yeast URA3 selection system to gram-negative bacteria and generation of a {delta}betCDE Pseudomonas putida strain. Applied and Environmental Microbiology71, 883–892.

Garavaglia M, Rossi E, Landini P. 2012. The pyrimidine nucleotide biosynthetic pathway modulates production of biofilm determinants in Escherichia coliPLoS ONE7, e31252.

Han S, Shen D, Wang Y C, Chou S H, Gomelsky M, Gao Y G, Qian G. 2020. A YajQ-LysR-like, cyclic di-GMP-dependent system regulating biosynthesis of an antifungal antibiotic in a crop-protecting bacterium, Lysobacter enzymogenesMolecular Plant Pathology21, 218–229.

Horzempa J, O’Dee D M, Shanks R M, Nau G J. 2010. Francisella tularensis DeltapyrF mutants show that replication in nonmacrophages is sufficient for pathogenesis in vivoInfection Immunity78, 2607–2619.

Hurek T, Reinhold-Hurek B. 2003. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology106, 169–178.

Kilstrup M, Hammer K, Ruhdal Jensen P, Martinussen J. 2005. Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiology Reviews29, 555–590.

Kobayashi D Y, Reedy R M, Bick J, Oudemans P V. 2002. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Applied and Environmental Microbiology68, 1047–1054.

Liautard J P, Jubier-Maurin V, Boigegrain R A, Kohler S. 2006. Antimicrobials: Targeting virulence genes necessary for intracellular multiplication. Trends in Microbiology14, 109–113.

Lin L, Yang Z, Tao M, Shen D, Cui C, Wang P, Wang L, Jing M, Qian G, Shao X. 2023. Lysobacter enzymogenes prevents Phytophthora infection by inhibiting pathogen growth and eliciting plant immune responses. Frontiers in Plant Science14, 1116147.

Lou L, Qian G, Xie Y, Hang J, Chen H, Zaleta-Rivera K, Li Y, Shen Y, Dussault P H, Liu F, Du L. 2011. Biosynthesis of HSAF, a tetramic acid-containing macrolactam from Lysobacter enzymogenesJournal of the American Chemical Society133, 643–645.

Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer S V, Machado M A, Toth I, Salmond G, Foster G D. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology13, 614–629.

Mattick J S. 2002. Type IV pili and twitching motility. Annual Review Microbiology56, 289–314.

Meza-Avina M E, Wei L, Buhendwa M G, Poduch E, Bello A M, Pai E F, Kotra L P. 2008. Inhibition of orotidine 5´-monophosphate decarboxylase and its therapeutic potential. Mini-Reviews in Medicinal Chemistry8, 239–247.

Naushad S, Adeolu M, Wong S, Sohail M, Schellhorn H E, Gupta R S. 2015. A phylogenomic and molecular marker based taxonomic framework for the order Xanthomonadales: Proposal to transfer the families Algiphilaceae and Solimonadaceae to the order Nevskiales ord. nov. and to create a new family within the order Xanthomonadales, the family Rhodanobacteraceae fam. nov., containing the genus Rhodanobacter and its closest relatives. Antonie van Leeuwenhoek107, 467–485.

Qian G, Wang Y, Liu Y, Xu F, He Y W, Du L, Venturi V, Fan J, Hu B, Liu F. 2013. Lysobacter enzymogenes uses two distinct cell-cell signaling systems for differential regulation of secondary-metabolite biosynthesis and colony morphology. Applied and Environmental Microbiology79, 6604–6616.

Qian G, Wang Y, Qian D, Fan J, Hu B, Liu F. 2012. Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World Journal of Microbiology and Biotechnology28, 549–557.

Qian G, Xu F, Venturi V, Du L, Liu F. 2014. Roles of a solo LuxR in the biological control agent Lysobacter enzymogenes strain OH11. Phytopathology104, 224–231.

Ralli P, Srivastava A C, O’Donovan G. 2007. Regulation of the pyrimidine biosynthetic pathway in a pyrD knockout mutant of Pseudomonas aeruginosaJournal of Basic Microbiology47, 165–173.

Rossi E, Motta S, Aliverti A, Cossu F, Gourlay L, Mauri P, Landini P. 2017. Cellulose production is coupled to sensing of the pyrimidine biosynthetic pathway via c-di-GMP production by the DgcQ protein of Escherichia coliEnvironmental Microbiology19, 4551–4563.

von Rozycki T, Nies D H. 2009. Cupriavidus metallidurans: Evolution of a metal-resistant bacterium. Antonie van Leeuwenhoek96, 115–139.

Shen F, Yin W, Song S, Zhang Z, Ye P, Zhang Y, Zhou J, He F, Li P, Deng Y. 2020. Ralstonia solanacearum promotes pathogenicity by utilizing L-glutamic acid from host plants. Molecular Plant Pathology21, 1099–1110.

Su Z, Chen H, Wang P, Tombosa S, Du L, Han Y, Shen Y, Qian G, Liu F. 2017a. 4-Hydroxybenzoic acid is a diffusible factor that connects metabolic shikimate pathway to the biosynthesis of a unique antifungal metabolite in Lysobacter enzymogenesMicrobial Biotechnology104, 163–178.

Su Z, Han S, Fu Z Q, Qian G, Liu F. 2017b. Heat-Stable Antifungal Factor (HSAF) biosynthesis in Lysobacter enzymogenes is controlled by the interplay of two transcription factors and a diffusible molecule. Applied and Environmental Microbiology84, e01754-17.

Ueda A, Attila C, Whiteley M, Wood T K. 2009. Uracil influences quorum sensing and biofilm formation in Pseudomonas aeruginosa and fluorouracil is an antagonist. Microbial Biotechnology2, 62–74.

Wang P, Chen H, Qian G, Liu F. 2017. LetR is a TetR family transcription factor from Lysobacter controlling antifungal antibiotic biosynthesis. Applied Microbiology and Biotechnology101, 3273–3282.

Wang Y, Zhao Y, Zhang J, Zhao Y, Shen Y, Su Z, Xu G, Du L, Huffman J M, Venturi V, Qian G, Liu F. 2014. Transcriptomic analysis reveals new regulatory roles of Clp signaling in secondary metabolite biosynthesis and surface motility in Lysobacter enzymogenes OH11. Applied Microbiology and Biotechnology98, 9009–9020.

Xu G, Han S, Huo C, Chin K H, Chou S H, Gomelsky M, Qian G, Liu F. 2018. Signaling specificity in the c-di-GMP-dependent network regulating antibiotic synthesis in LysobacterNucleic Acids Research46, 9276–9288.

Xu K, Shen D, Yang N, Chou S H, Gomelsky M, Qian G. 2021. Coordinated control of the type IV pili and c-di-GMP-dependent antifungal antibiotic production in Lysobacter by the response regulator PilR. Molecular Plant Pathology22, 602–617.

Yang M, Ren S, Shen D, Chou S H, Qian G. 2020a. ClpP mediates antagonistic interaction of Lysobacter enzymogenes with a crop fungal pathogen. Biological Control140, 104125.

Yang M, Ren S, Shen D, Yang N, Wang B, Han S, Shen X, Chou S H, Qian G. 2020b. An intrinsic mechanism for coordinated production of the contact-dependent and contact-independent weapon systems in a soil bacterium. PLoS Pathogens16, e1008967.

Yu F, Zaleta-Rivera K, Zhu X, Huffman J, Millet J C, Harris S D, Yuen G, Li X C, Du L. 2007. Structure and biosynthesis of heat-stable antifungal factor (HSAF), a broad-spectrum antimycotic with a novel mode of action. Antimicrobial Agents and Chemotherapy51, 64–72.

Zhang X, de Maat V, Guzman Prieto A M, Prajsnar T K, Bayjanov J R, de Been M, Rogers M R C, Bonten M J M, Mesnage S, Willems R J L, van Schaik W. 2017. RNA-seq and Tn-seq reveal fitness determinants of vancomycin-resistant Enterococcus faecium during growth in human serum. BMC Genomics18, 893.

Zhao Y, Cheng C, Jiang T, Xu H, Chen Y, Ma Z, Qian G, Liu F. 2019. Control of wheat fusarium head blight by heat-stable antifungal factor (HSAF) from Lysobacter enzymogenesPlant Disease103, 1286–1292.

No related articles found!
No Suggested Reading articles found!