Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (10): 3022-3033    DOI: 10.1016/j.jia.2023.08.007
Horticulture Advanced Online Publication | Current Issue | Archive | Adv Search |
The nitrate-responsive transcription factor MdNLP7 regulates callus formation by modulating auxin response
LI Tong1, FENG Zi-quan1, ZHANG Ting-ting1, YOU Chun-xiang1, ZHOU Chao2#, WANG Xiao-fei1#
1 Apple Technology Innovation Center of Shandong Province/Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production/National Key Laboratory of Wheat Improvement/College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, P.R.China
2 National Key Laboratory of Wheat Improvement/College of Life Sciences, Shandong Agricultural University, Tai’an 271018, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

植物细胞具有全能性,在合适的培养条件下,已分化的植物细胞可以通过脱分化和再分化过程产生新的植物组织和器官。在这一过程中,生长素促进细胞生长与分裂,诱导愈伤组织的形成;细胞分裂素促进细胞的分裂并诱导不定芽的形成。硝酸盐不仅是植物生长发育必需的营养元素,还作为信号分子激活一系列基因的表达,进而影响植物生长发育。植物体内的硝酸盐信号通路还能够调控影响生长素的生物合成和运输,调控植物侧根的生长发育。MdNLP7是硝酸盐响应的主要调节因子,参与了植物体内硝酸盐的吸收和转运。在本研究中,将MdNLP7转录因子在拟南芥中异位表达,发现MdNLP7蛋白可以调控根外植体的再生;进一步的研究结果表明,MdNLP7介导了中柱鞘细胞分裂的起始。在愈伤组织形成的过程中,MdNLP7可以上调生长素合成和转运相关基因的表达,并通过影响生长素的分布来实现对根外植体形成的调控过程,进而调控硝酸盐介导的根外植体再生。



Abstract  

Under appropriate culture conditions, plant cells can regenerate new organs or even whole plants.  De novo organ regeneration is an excellent biological system, which usually requires additional growth regulators, including auxin and cytokinin.  Nitrate is an essential nutrient element for plant vegetative and reproductive development.  It has been reported that nitrate is involved in auxin biosynthesis and transport throughout the growth and development of plants.  In this study, we demonstrated that the ectopic expression of the MdNLP7 transcription factor in Arabidopsis could regulate the regeneration of root explants.  MdNLP7 mainly participated in the regulation of callus formation, starting with pericycle cell division, and mainly affected auxin distribution and accumulation in the regulation process.  Moreover, MdNLP7 upregulated the expression of genes related to auxin biosynthesis and transport in the callus formation stage.  The results demonstrated that MdNLP7 may play a role in the nitrate-modulated regeneration of root explants.  Moreover, the results revealed that nitrate–auxin crosstalk is required for de novo callus initiation and clarified the mechanisms of organogenesis.

Keywords:  MdNLP7        callus initiation        auxin        nitrate       pericycle        shoot regeneration  
Received: 05 February 2023   Accepted: 22 June 2023
Fund: This work was supported by the National Natural Science Foundation of China (31972378), the Shandong Province Key R&D Program, China (2021CXGC010802), and the China Agriculture Research System of MOF and MARA (CARS-27).  
About author:  LI Tong, E-mail: 785382077@qq.com; #Correspondence WANG Xiao-fei, E-mail: wangxiaofei@sdau.edu.cn; ZHOU Chao, E-mail: zhouc@sdau.edu.cn

Cite this article: 

LI Tong, FENG Zi-quan, ZHANG Ting-ting, YOU Chun-xiang, ZHOU Chao, WANG Xiao-Fei. 2023. The nitrate-responsive transcription factor MdNLP7 regulates callus formation by modulating auxin response. Journal of Integrative Agriculture, 22(10): 3022-3033.

Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc H A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D. 2009. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitroPlant Journal4, 626–644.

Avery G S, Burkholder P R, Creighton H B. 1937. Nutrient deficiencies and growth hormone concentration in helianthus and nicotiana. American Journal of Botany24, 553–557.

Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J. 2003. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell5, 591–602.

Bohn-Courseau I. 2010. Auxin: A major regulator of organogenesis. Comptes Rendus Biologies333, 290–296.

Che P, Lall S, Howell S H. 2007. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta5, 1183–1194.

Chen L, Tong J, Xiao L, Ruan Y, Liu J, Zeng M, Huang H, Wang J W, Xu L. 2016. YUCCA-mediated auxin biogenesis is required for cell fate transition occurring during de novo root organogenesis in Arabidopsis. Journal of Experimental Botany14, 4273–4284.

Curtis I S. 2010. Genetic transformation - Agrobacterium. In: Davey M R, Anthony P. eds., Plant Cell Culture: Essential Methods. Wiley-Blackwell. England. pp. 199–215.

Dai X, Liu N, Wang L, Li J, Zheng X, Xiang F, Liu Z. 2020. MYB94 and MYB96 additively inhibit callus formation via directly repressing LBD29 expression in Arabidopsis thalianaPlant Science293, 110323.

Dubrovsky J G, Rost T L, Colon-Carmona A, Doerner P. 2001. Early primordium morphogenesis during lateral root initiation in Arabidopsis thalianaPlanta214, 30–36.

Feng Z Q, Li T, Wang X, Sun W J, Zhang T T, You C X, Wang X F. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science316, 111158.

Friml J. 2010. Subcellular trafficking of PIN auxin efflux carriers in auxin transport. European Journal of Cell Biology2–3, 231–235.

Friml J, Palme K. 2001. Polar auxin transport: Old concepts and new questions. Plant Molecular Biology49, 273–284.

Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G. 2003. Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature6963, 147–153.

Gordon S P, Heisler M G, Reddy G V, Ohno C, Das P, Meyerowitz E M. 2007. Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development134, 3539–3548.

Guan P. 2017. Dancing with hormones: A current perspective of nitrate signaling and regulation in Arabidopsis. Frontiers in Plant Science8, 1697.

Gutiérrez R A, Lejay L V, Dean A, Chiaromonte F, Shasha D E, Coruzzi G M. 2007. Qualitative network models and genome-wide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biology8, R7.

De Klerk G J, Arnholdt-Schmitt B L R, Neumann K H. 1997. Regeneration of roots, shoots and embryos: Physiological, biochemical and molecular aspects. Biologia Plantarum39, 53–66.

Konishi M, Yanagisawa S. 2019. The role of protein–protein interactions mediated by the PB1 domain of NLP transcription factors in nitrate-inducible gene expression. BMC Plant Biology19, 90.

Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A. 2010. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Developmental Cell6, 927–937.

Kumar N, Caldwell C, Iyer-Pascuzzi A S. 2023. The NIN-LIKE PROTEIN 7 transcription factor modulates auxin pathways to regulate root cap development in Arabidopsis. Journal of Experimental Botany, 74, 3047–3059.

Laskowski M J, Williams M E, Nusbaum H C, Sussex I M. 1995. Formation of lateral root meristems is a two-stage process. Development121, 3303–3310.

Lee H W, Kim N Y, Lee D J, Kim J. 2009. LBD18/ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiolgy3, 1377–1389.

Liu J, Sheng L, Xu Y, Li J, Yang Z, Huang H, Xu L. 2014. WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell3, 1081–1093.

Liu K H, Liu M, Lin Z, Wang Z F, Chen B, Liu C, Guo A, Konishi M, Yanagisawa S, Wagner G, Sheen J. 2022. NIN-like protein 7 transcription factor is a plant nitrate sensor. Science6613, 1419–1425.

Liu K H, Niu Y, Konishi M, Wu Y, Du H, Chung H S, Li L, Boudsocq M, McCormack M, Maekawa S, Ishida T, Zhang C, Shokat K, Yanagisawa S, Sheen J. 2017. Discovery of nitrate–CPK–NLP signalling in central nutrient–growth networks. Nature545, 311–316.

Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X, Tong Y. 2014. Auxin biosynthetic gene TAR2 is involved in low nitrogen-mediated reprogramming of root architecture in Arabidopsis. Plant Journal78, 70–79.

Michael M L. 2013. New practical and theoretical approaches to the induction of morphogenesis from plant tumors in vitro using new types of plant growth regulators: towards constructive paradigms in agriculture and medicine. Theoretical Biology Forum106, 73–87.

Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in ArabidopsisPlant Cell19, 118–130.

Overvoorde P, Fukaki H, Beeckman T. 2010. Auxin control of root development. Cold Spring Harbor Perspectives in Biology6, a1537.

Pernisova M, Klima P, Horak J, Valkova M, Malbeck J, Soucek P, Reichman P, Hoyerova K, Dubova J, Friml J, Zazimalova E, Hejatko J. 2009. Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proceedings of the National Academy of Sciences of the United States of America106, 3609–3614.

Petrásek J, Friml J. 2009. Auxin transport routes in plant development. Development136, 2675–2688.

Reinert J, Tazawa M, Semenoff S. 1967. Nitrogen compounds as factors of embryogenesis in vitroNature5121, 1215–1216.

Sangwan R S, Sangwan-Norreel B S, Harada H. 1997. In vitro techniques and plant morphogenesis: fundamental aspects and practical applications. Plant Biotechnology Journal14, 93–100.

Sengar R S, Chaudhary R, Tyagi S K. 2010. Present status and scope of floriculture developed through different biological tools. Australian Journal of Agricultural Research1, 306–314.

Shahzad A, Parveen S, Sharma S, Shaheen A, Saeed T, Yadav V, Akhtar R, Ahmad Z, Upadhyay A. 2017. Plant Tissue Culture: Applications in Plant Improvement and Conservation. Springer Singapore. pp. 37–72.

Shang B, Xu C, Zhang X, Cao H, Xin W, Hu Y. 2016. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America18, 5101–5106.

Skoog F, Miller C O. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitroJournal of Experimental Biology11, 118–130.

Stitt M. 1999. Nitrate regulation of metabolism and growth. Current Opinion in Plant Biology2, 178–186.

Su Y H, Zhang X S. 2009. Auxin gradients trigger de novo formation of stem cells during somatic embryogenesis. Plant Signaling & Behavior7, 574–576.

Sugimoto K, Jiao Y L, Meyerowitz E M. 2010. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Developmental Cell18, 463–471.

Suo J, Zhou C, Zeng Z, Li X, Bian H, Wang J, Zhu M, Han N. 2021. Identification of regulatory factors promoting embryogenic callus formation in barley through transcriptome analysis. BMC Plant Biology21, 145.

Tao Y, Ferrer J L, Ljung K, Pojer F, Hong F X, Long J A, Li L, Moreno J E, Bowman M E, Ivans L J, Cheng Y F, Lim J, Zhao Y D, Ballaré C L, Sandberg G, Noel J P, Chory J. 2008. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell133, 164–176.

Thorpe T A. 2007. History of plant tissue culture. Molecular Biotechnology2, 169–180.

Tian Q Y, Sun P, Zhang W H. 2009. Ethylene is involved in nitrate-dependent root growth and branching in Arabidopsis thalianaNew Phytologist184, 918–931.

Tsugeki R, Ditengou F A, Sumi Y, Teale W, Palme K, Okada K. 2010. No vein mediates auxin-dependent specification and patterning in the Arabidopsis embryo, shoot, and root. Plant Cell21, 3133–3151.

Valvekens D, Van Montagu M, Van Lijsebettens M. 1988. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Sciences of the United States of America15, 5536–5540.

Wang Y Y, Hsu P K, Tsay Y F. 2012. Uptake, allocation and signaling of nitrate. Trends in Plant Science8, 458–467.

Yadav S R, Bishopp A, Helariutta Y. 2010. Plant development: Early events in lateral root initiation. Current Biology19, 843–845.

Yildiz M. 2012. The prerequisite of the success in plant tissue culture: High frequency shoot regeneration. In: Leva A, Rinaldi L M R, eds., Recent Advances in Plant in vitro Culture. IntechOpen Limited, London, UK. pp. 63–90.

Yu L H, Wu J, Tang H, Yuan Y, Wang S M, Wang Y P, Zhu Q S, Li S G, Xiang C B. 2016. Overexpression of Arabidopsis NLP7 improves plant growth under both nitrogen-limiting and sufficient conditions by enhancing nitrogen and carbon assimilation. Scientific Reports6, 27795.

Yuan B, Liao X, Zheng X, Wu L, Zhao H. 2005. Metabolism and role of indoleacetic acid in plant cells. Biological Bulletin40, 21–23.

Zhai N, Xu L. 2021. Pluripotency acquisition in the middle cell layer of callus is required for organ regeneration. Nature Plants11, 1453–1460.

Zhang H, Jennings A, Barlowm P W, Forde B G. 1999. Dual pathways for regulation of root branching by nitrate. Proceedings of the National Academy of Sciences of the United States of America11, 6529–6534.

Zhang J, Nodzynski T, Pencik A, Rolcik J, Friml J. 2010. PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proceedings of the National Academy of Sciences of the United States of America2, 918–922.

Zhang T T, Kang H, Fu L L, Sun W J, Gao W S, You C X, Hao Y J. 2021. Nin-like protein 7 promotes nitrate-mediated lateral root development by activating transcription of tryptophan aminotransferase related 2. Plant Science303, 110771.

Zhao Q, Ren Y R, Wang Q J, Wang X F, You C X, Hao Y J. 2016. Ubiquitination related MdBT scaffold proteins target a bHLH transcription factor for iron homeostasis. Plant Physiology172, 1973–1988.

Zhao Y, Christensen S K, Fankhauser C, Cashman J R, Cohen J D, Weigel D, Chory J. 2001. A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science5502, 306–309.

No related articles found!
No Suggested Reading articles found!