Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (7): 2227-2241    DOI: 10.1016/j.jia.2023.06.034
Crop Science Advanced Online Publication | Current Issue | Archive | Adv Search |
The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development
Jing Chen, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang#
State Key Laboratory of Crop Biology/College of Agronomy, Shandong Agricultural University, Tai’an 271018, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

雌穗分化、籽粒发育及其与温度、太阳辐射、降水等生长季环境条件的互作,极大地影响穗粒数和粒重,最终影响夏玉米产量。2018-2020年,本研究共设置5个播期处理,通过3年的播期试验,评价了温度因子、平均太阳辐射和总降水量对黄淮海地区4个不同生育期夏玉米品种的生育进程、雌穗分化、受精结实特性、籽粒灌浆特性和产量的影响。结果表明,夏玉米产量形成受吐丝(R1)至乳熟期(R3)环境条件的影响较大。平均最低气温(ATmin)是决定产量形成的关键环境因子。出苗(VE)到R1ATmin升高会导致夏玉米的生育期缩短(r=-0.556,P<0.01),雌穗总小花数(R2=0.200,P<0.001)减少。灌浆速率(R2=0.520,P<0.001)和雌穗小花败育率(R2=0.437,P<0.001)均与R1至成熟期(R6)的ATmin呈二次曲线关系,而花后天数(r=-0.756,P<0.01)与ATmin呈显著负相关。花后ATmin的适度提高有利于产量的提升(R1-R3阶段不高于23°CR1-R6阶段不高于21°C),增加的太阳辐射和降水量有利于籽粒灌浆速率(R2=0.562,P<0.001和R2=0.229,P<0.05)的提高。与短生育期品种相比,长生育期品种表现出更强的环境适应性。协调吐丝前后的ATmin条件与雌穗分化和籽粒发育的匹配可增加雌穗总小花数、籽粒灌浆速率,降低小花败育率,从而提高玉米产量。



Abstract  

Ear differentiation, grain development and their interaction with factors in the growing environment, such as temperature, solar radiation and precipitation, greatly influence grain number and grain weight, and ultimately affect summer maize production.  In this study, field experiments involving different sowing dates were conducted over three years to evaluate the effects of temperature factors, average solar radiation and total precipitation on the growth process, ear differentiation, fertilization characteristics, grain filling and yield of summer maize varieties with different growth durations.  Four hybrids were evaluated in Huang-Huai-Hai Plain (HHHP), China from 2018 to 2020 with five different sowing dates.  The results showed that the grain yield formation of summer maize was strongly impacted by the environment from the silking (R1) to milking (R3) stage.  Average minimum temperature (ATmin) was the key environmental factor that determined yield.  Reductions in the length of the growing season (r=–0.556, P<0.01) and the total floret number on ear (R2=0.200, P<0.001) were found when ATmin was elevated from the emerging (VE) to R1 stage.  Both grain-filling rate (R2=0.520, P<0.001) and the floret abortion rate on ear (R2=0.437, P<0.001) showed quadratic relationships with ATmin from the R1 to physiological maturity (R6) stage, while the number of days after the R1 stage (r=–0.756, P<0.01) was negatively correlated with ATmin.  An increase in ATmin was beneficial for the promotion of yield when it did not exceeded a certain level (above 23°C during the R1–R3 stage and 20–21°C during the R1-R6 stage).  Enhanced solar radiation and precipitation during R1–R6 increased the grain-filling rate (R2=0.562, P<0.001 and R2=0.229, P<0.05, respectively).  Compared with short-season hybrids, full-season hybrids showed much greater suitability for a critical environment.  The coordinated regulation of ATmin, ear differentiation and grain development at the pre- and post-silking stages improved maize yield by increasing total floret number and grain-filling rate, and by reducing the floret abortion rate on ear. 

Keywords:  sowing date        hybrid maturity       growing environment        ear differentiation and grain development  
Received: 20 March 2023   Accepted: 09 June 2023
Fund: 
This work was supported by Key Technology Research and Development Program of Shandong Province, China (2021LZGC014-2), the National Natural Science Foundation of China (32172115), and the National Modern Agriculture Industry Technology System, China (CARS-02-21).
About author:  Jing Chen, E-mail: 15650451831@163.com; #Correspondence Jiwang Zhang, Tel: +86-538-8245838, E-mail: jwzhang@sdau.edu.cn

Cite this article: 

Jing Chen, Baizhao Ren, Bin Zhao, Peng Liu, Jiwang Zhang. 2024. The environment, especially the minimum temperature, affects summer maize grain yield by regulating ear differentiation and grain development. Journal of Integrative Agriculture, 23(7): 2227-2241.

Ali A, Erenstein O. 2017. Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management16, 183–194.

Amas J I, Fernandez J A, Curin F, Cirilo A G, Ciampitti I A, Otegui M E. 2022. Maize genetic progress in the central Pampas of Argentina: Effects of contrasting sowing dates. Field Crops Research281, 108492.

Andrade F H, Vega C R C, Uhart S, Cirilo A, Cantarero M, Valentinuz O. 1999. Kernel number determination in maize. Crop Science39, 453–459.

Anjum M M, Arif M, Riaz M, Akhtar K, Zhang S Q, Zhao C P. 2021. Performance of hybrid wheat cultivars facing deficit irrigation under semi-arid climate in pakistan. Agronomy11, 1976.

Borrás L, Vitantonio-Mazzini L N. 2018. Maize reproductive development and kernel set under limited plant growth environments. Journal of Experimental Botany69, 3235–3243.

Borrás L, Westgate M E, Astini J P, Echarte L. 2007. Coupling time to silking with plant growth rate in maize. Field Crops Research102, 73–85.

Borrás L, Westgate M E, Otegui M E. 2003. Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Annals of Botany91, 857–867.

Chapman S C, Edmeades G O. 1999. Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Science, 39, 1315–1324.

Chazarreta Y D, Amas J I, Otegui M E. 2021. Kernel filling and desiccation in temperate maize: Breeding and environmental effects. Field Crops Research271, 108243.

Chen H P. 2013. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chinese Science Bulletin58, 1462–1472.

Cirilo A G, Andrade F H. 1994. Sowing date and maize productivity: II. Kernel number determination. Crop Science34, 1044–1046.

Dwyer L M, Ma B L, Evenson L, Hamilton R L. 1994. Maize physiological traits related to grain yield and harvest moisture in mid- to short-season environments. Crop Science34, 985–992.

FAO (Food and Agriculture Organization). 2020. Online statistical database: Agriculture database. Farmat Data Systems. [2022-8-17]. https://faostat.fao.org/zh/#data/QCL

Gao J Q, Yang X G, Zheng B Y, Liu Z J, Sun S. 2020. Does precipitation keep pace with temperature in the marginal double-cropping area of northern China? European Journal of Agronomy120, doi: 10.1016/j.eja.2020.126126

Gao Z, Feng H Y, Liang X G, Zhang L, Lin S, Zhao X, Shen S, Zhou L L, Zhou S L. 2018. Limits to maize productivity in the North China Plain: A comparison analysis for spring and summer maize. Field Crops Research228, 39–47.

Gasura E, Setimela P, Edema R, Gibson P T, Okori P, Tarekegne A. 2013. Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize. Crop Science53, 2295–2303.

Hisse I R, D’Andrea K E, Otegui M E. 2021. Kernel weight responses to the photothermal environment in maize dent×flint and flint×flint hybrids. Crop Science61, 1996–2011.

Hou P, Liu Y E, Liu W M, Yang H S, Xie R Z, Wang K R, Ming B, Liu G Z, Xue J, Wang Y H, Zhao R L, Zhang W J, Wang Y J, Bian S F, Ren H, Zhao X Y, Liu P, Chang J Z, Zhang G H, Liu J Y, et al. 2021. Quantifying maize grain yield losses caused by climate change based on extensive field data across China. ResourcesConservation and Recycling174, 105811.

Hu J, Ren B Z, Dong S T, Liu P, Zhao B, Zhang J W. 2021. Poor development of spike differentiation triggered by lower photosynthesis and carbon partitioning reduces summer maize yield after waterlogging. The Crop Journal10, 478–489.

Hu J, Yu W Z, Liu P, Zhao B, Zhang J W, Ren B Z. 2023. Responses of canopy functionality, crop growth and grain yield of summer maize to shading, waterlogging, and their combination stress at different crop stages. European Journal of Agronomy144, 126761.

Huang M X, Wang J, Wang B, Liu D L, Yu Q, He D, Wang N, Pan X B. 2020. Optimizing sowing window and cultivar choice can boost China’s maize yield under 1.5°C and 2°C global warming. Environmental Research Letters15, 024015.

Huang S B, Lv L H, Zhu J C, Li Y B, Tao H B, Wang P. 2018. Extending growing period is limited to offsetting negative effects of climate changes on maize yield in the North China Plain. Field Crops Research, 215, 66–73.

Ke F, Ma X L. 2021. Responses of maize hybrids with contrasting maturity to planting date in Northeast China. Scientific Reports11, 15776.

Kiniry J R, Ritchie J T. 1985. Shade-sensitive interval of kernel number of maize. Agronomy Journal77, 711–715.

Li T, Zhang X P, Liu Q, Yan P, Liu J, Chen Y Q, Sui P. 2022. Yield and yield stability of single cropping maize under different sowing dates and the corresponding changing trends of climatic variables. Field Crops Research285, 108589.

Li Y, Guan K Y, Schnitkey G D, DeLucia E, Peng B. 2019. Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global Change Biology25, 2325–2337.

Li Z B, Sun Y, Li T, Ding Y H, Hu T. 2019. Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5°C of warming. Earths Future7, 1391–1406.

Liu Y J, Qin Y, Wang H J, Lv S, Ge Q S. 2020. Trends in maize (Zea mays L.) phenology and sensitivity to climate variables in China from 1981 to 2010. International Journal of Biometeorolog64, 461–470.

Liu Y J, Zhang J, Pan T, Chen Q M, Qin Y, Ge Q S. 2022. Climate-associated major food crops production change under multi-scenario in China. Science of the Total Environment811, 151393.

Liu Z J, Hubbard K G, Lin X M, Yang X G. 2013. Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology19, 3481–3492.

Luo Y C, Zhang Z, Zhang L L, Zhang J, Tao F L. 2022. Weakened maize phenological response to climate warming in China over 1981‒2018 due to cultivar shifts. Advances in Climate Change Research13, 710–720.

Meng Q F, Liu B H, Yang H S, Chen X P. 2020. Solar dimming decreased maize yield potential on the North China Plain. Food and Energy Security9, e235.

Meng Q F, Wang H F, Yan P, Pan J X, Lu D J, Cui Z L, Zhang F S, Chen X P. 2017. Designing a new cropping system for high productivity and sustainable water usage under climate change. Scientific Reports7, 41587.

Olesen J E, Bindi M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy16, 239–262.

Ren H, Han K, Liu Y E, Zhao Y L, Zhang L H, He Q J, Li Z H, Zhang J B, Liu P, Wang H Z, Zhang J W, Zhao B. 2021. Improving smallholder farmers’ maize yields and economic benefits under sustainable crop intensification in the North China Plain. Science of the Total Environment763, 143035.

Sadok W, Jagadish S V K. 2020. The hidden costs of nighttime warming on yields. Trends in Plant Science25, 644–651.

Shao R X, Yu K K, Li H W, Jia S J, Yang Q H, Zhao X, Zhao Y L, Liu T X. 2021. The effect of elevating temperature on the growth and development of reproductive organs and yield of summer maize. Journal of Integrative Agriculture20, 1783–1795.

Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. 2018. Delayed pollination and low availability of assimilates are major variables causing maize kernel abortion. Journal of Experimental Botany69, 1599–1613.

Shiferaw B, Prasanna B M, Hellin J, Bänziger M. 2011. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security3, 307–327.

Tebaldi C, Lobell D. 2018. Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environmental Research Letters13, 065001.

Tian B J, Zhu J C, Nie Y S, Xu C L, Meng Q F, Wang P. 2018. Mitigating heat and chilling stress by adjusting the sowing date of maize in the north China Plain. Journal of Agronomy and Crop Science205, 77–87.

Uribelarrea M, Carcova J, Borras L, Otegui M E. 2008. Enhanced kernel set promoted by synchronous pollination determines a tradeoff between kernel number and kernel weight in temperate maize hybrids. Field Crops Research105, 172–181.

Wang Y Y, Tao H B, Zhang P, Hou X, Huang S B. 2019. Reduction in seed set upon exposure to high night temperature during flowering in maize. Physiologia Plantarum169, 73–82.

Whitworth-Hulse J I, Jobbágy E G, Borrás L, Alsina S E, Houspanossian J, Nosetto M D. 2023. The expansion of rainfed grain production can generate spontaneous hydrological changes that reduce climate sensitivity. Agriculture Ecosystems and Environment349, 108440.

Xia H Y, Qiao Y T, Li X J, Xue Y H, Wang N, Yan W, Xue Y F, Cui Z L, van der Werf W. 2022. Moderation of nitrogen input and integration of legumes via intercropping enable sustainable intensification of wheat–maize double cropping in the North China Plain: A four-year rotation study. Agricultural Systems204, 103540.

Yan P, Chen Y, Sui P, Vogel A, Zhang X P. 2018. Effect of maize plant morphology on the formation of apical kernels at different sowing dates and under different plant densities. Field Crops Research223, 83–92.

Yu Y, Jiang Z H, Wang G J, Kattel G R, Chuai X W, Shang Y, Zou Y F, Miao L J. 2022. Disintegrating the impact of climate change on maize yield from human management practices in China. Agricultural and Forest Meteorology327, 109235.

Zampieri M, Ceglar A, Dentener F, Dosio A, Naumann G, Van Den Berg M, Toreti A. 2019. When will current climate extremes affecting maize production become the norm? Earth’s Future7, 113–122.

Zhang M, Chen T, Latifmanesh H, Feng X M, Cao T H, Qian C R, Deng A X, Song Z W, Zhang W J. 2018. How plant density affects maize spike differentiation, kernel set, and grain yield formation in Northeast China? Journal of Integrative Agriculture, 17, 1745–1757.

Zhang X Y, Dong P, Chen S Y, Sun H Y, Yang Y H. 2006. Performance of double-cropped winter wheat–summer maize under minimum irrigation in the north China plain. Agronomy Journal98, 1620–1626.

Zhang Y, Wang K C. 2023. Global precipitation system scale increased from 2001 to 2020. Journal of Hydrology616, 128768.

Zhang Z T, Yang X G, Liu Z J, Bai F, Sun S, Nie J Y, Gao J Q, Ming B, Xie R Z, Li S K. 2020. Spatio-temporal characteristics of agro-climatic indices and extreme weather events during the growing season for summer maize (Zea mays L.) in Huanghuaihai region. China International Journal of Biometeorology64, 827–839.

Zhou B Y, Yue Y, Sun X F, Ding Z S, Ma W, Zhao M. 2017. Maize kernel weight responses to sowing date-associated variation in weather conditions. The Crop Journal5, 43–51.

Zhou B Y, Yue Y, Sun X F, Wang X B, Wang Z M, Ma W, Zhao M, 2016. Maize grain yield and dry matter production responses to variations in weather conditions. Agronomy Journal, 108, 196–204.

No related articles found!
No Suggested Reading articles found!