Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (9): 2700-2719    DOI: 10.1016/j.jia.2022.07.010
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Cold plasma promotes Sertoli cell proliferation via AMPK-mTOR signaling pathway
ZHANG Jiao-jiao, LI Ya-qi, SHI Mei, WANG Yu-sha, TANG Yao, WANG Xian-zhong

Chongqing Key Laboratory of Forage and Herbivore, College of Veterinary Medicine, Southwest University, Chongqing 400715, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究旨在探讨低温等离子体对仔鸡睾丸支持细胞增殖的影响及其调控机制。结果发现,用2.4 W放电功率的低温等离子体间隔6 h处理两次,每次处理时间30 s,对支持细胞的活性、生长速度和细胞的周期进程具有最大的促进作用(P<0.05)。低温等离子体处理增加了睾丸支持细胞线粒体的活性、三磷酸腺苷的产生和呼吸链酶的活性(P<0.05),减少了细胞内活性氧的生成(P<0.05),提高了抗氧化酶的活性(P<0.05),增加了miR-7450-5p的表达(P<0.05),使腺苷一磷酸活化蛋白激酶(adenosine monophosphate-activated protein kinase, AMPK)的水平降低(P<0.05),并且降低了miR-100-5p的表达(P<0.05),使哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)的水平升高(P<0.05)。支持细胞转染miR-7450-5p抑制剂降低了miR-7450-5p的表达(P<0.05),增加了AMPK的水平(P<0.05),转染miR-100-5p模拟物增加了细胞miR-100-5p的表达(P<0.05),降低了mTOR的水平(P<0.05)。转染miR-7450-5p抑制剂和miR-100-5p模拟物均显著降低了睾丸支持细胞的活性和生长(P<0.05),抑制了细胞周期进程(P<0.05),减少了线粒体的活性、三磷酸腺苷的水平和呼吸链酶的活性(P<0.05),然而低温等离子体处理可以显著改善miR-7450-5p抑制剂和miR-100-5p模拟物对支持细胞增殖的抑制作用(P<0.05)。研究结果表明,低温等离子体处理可能通过影响miRNAs水平与活性氧稳态来调控AMPK-mTOR信号通路,进而通过增加线粒体三磷酸腺苷水平和呼吸链酶活性促进睾丸支持细胞的增殖。本研究优化了低温等离子体促进睾丸支持细胞增殖的处理条件,阐述了其调控的可能机制,为临床实际中利用低温等离子体技术促进睾丸支持细胞增殖奠定基础,从而有利于提高公鸡的繁殖性能。




Abstract  

This study investigated cold plasmas for multiple biological applications.  Our previous work has found dielectric barrier discharge plasma improves chicken sperm quality.  The number of Sertoli cells (SCs) decides spermatogenesis.  However, whether cold plasma can regulate SC proliferation remains unclear.  This study explored the effects of cold plasma on immature chicken SC proliferation and the regulation mechanism.  Results showed that cold plasma exposure at 2.4 W for 30 s twice with an interval of 6 h produced (P<0.05) the maximum SC viability, cell growth, and cell cycle progression.  SC proliferation-promoting effect of cold plasma treatment was regulated by increasing (P<0.05) the adenosine triphosphate production and the respiratory enzyme activity in the mitochondria.  This process was potentially mediated by the adenosine monophosphate-activated protein kinase (AMPK)–mammalian target of rapamycin (mTOR) signaling pathway, which was regulated by the microRNA (miRNA) targeting regulation directly and by the intracellular reactive oxygen species homeostasis indirectly.  The cold plasma treatment increased (P<0.01) the miR-7450-5p expression and led to a decreased (P<0.01) AMPKα1 level.  On the other hand, miR-100-5p expression was reduced (P<0.05) and led to an increased (P<0.05) mTOR level in SCs.  A single-stranded synthetic miR-7450-5p antagomir and a double-stranded synthetic miR-100-5p agomir reduced (P<0.05) the SC proliferation.  However, this could be ameliorated (P<0.05) by the cold plasma treatment.  Our findings suggest that appropriate cold plasma treatment provides a safe strategy to improve SC proliferation, which is beneficial to elevating male chicken reproductive capacity.

Keywords:  cold plasma       Sertoli cell proliferation       AMPK       mTOR       miRNAs  
Received: 16 April 2021   Accepted: 04 January 2022
Fund: This research was supported by the National Natural Science Foundation of China (31902338), the Natural Science Foundation of Chongqing, China (cstc2019jcyj-msxmX0056), and the Innovative Project of Chongqing Returned Overseas Person Entrepreneurship and Innovation Plan, China (cx2020057).
About author:  ZHANG Jiao-jiao, E-mail: zhangjjff@126.com; Correspondence WANG Xian-zhong, E-mail: xianzhong_wang@aliyun.com

Cite this article: 

ZHANG Jiao-jiao, LI Ya-qi, SHI Mei, WANG Yu-sha, TANG Yao, WANG Xian-zhong. 2022. Cold plasma promotes Sertoli cell proliferation via AMPK-mTOR signaling pathway. Journal of Integrative Agriculture, 21(9): 2700-2719.

Albert V, Hall M N. 2015. mTOR signaling in cellular and organismal energetics. Current Opinion in Cell Biology, 33, 55–66.
Arciuch V G A, Elguero M E, Poderoso J J, Carreras M C. 2012. Mitochondrial regulation of cell cycle and proliferation. Antioxidants & Redox Signaling, 16, 1150–1180.
Balzer J, Heuer K, Demir E, Hoffmanns M A, Baldus S, Fuchs P C, Awakowicz P, Suschek C V, Opländer C. 2015. Non-thermal dielectric barrier discharge (DBD) effects on proliferation and differentiation of human fibroblasts are primary mediated by hydrogen peroxide. PLoS ONE, 10, e0144968.
Chen M B, Wei M X, Han J Y, Wu X Y, Li C, Wang J, Shen W, Lu P H. 2014. MicroRNA-451 regulates AMPK/mTORC1 signaling and fascin1 expression in HT-29 colorectal cancer. Cellular Signalling, 26, 102–109.
Du M, Shen Q, W., Zhu M J, Ford S P. 2007. Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase. Journal of Animal Science, 85, 919–927.
Faure M, Guibert E, Crochet S, Chartrin P, Brillard J P, Collin A, Froment P. 2017. Differential proliferation and metabolic activity of Sertoli cells in the testes of broiler and layer breeder chickens. Poultry Science, 96, 2459–2470.
Guibert E, Briere S, Pelletier R, Brillard J P, Froment P. 2011. Characterization of chicken Sertoli cells in vitro. Poultry Science, 90, 1276–1286.
Haertel B, Volkmann F, von Woedtke T, Lindequist U. 2012. Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma. Immunobiology, 217, 628–633.
Hai Y, Hou J, Liu Y, Liu Y, Yang H, Li Z, He Z. 2014. The roles and regulation of Sertoli cells in fate determinations of spermatogonial stem cells and spermatogenesis. Seminars in Cell & Developmental Biology, 29, 66–75.
Hardie D G. 2011. AMP-activated protein kinase - an energy sensor that regulates all aspects of cell function. Genes & Development, 25, 1895–1908.
Hardie D G. 2015. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Current Opinion in Cell Biology, 33, 1–7.
Hinchy E C, Gruszczyk A V, Willows R, Navaratnam N, Hall A R, Bates G, Bright T P, Krieg T, Carling D, Murphy M P. 2018. Mitochondria-derived ROS activate AMP-activated protein kinase (AMPK) indirectly. Journal of Biological Chemistry, 293, 17208–17217.
Hy-Line International. 2014. The Hy-Line Redbook: An Online Management Guide. [2014-07-25]. http://www.hyline.com/aspx/redbook/redbook.aspx
Kalghatgi S, Friedman G, Fridman A, Clyne A M. 2010. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Annals of Biomedical Engineering, 38, 748–757.
Kalghatgi S, Kelly C M, Cerchar E, Torabi B, Alekseev O, Fridman A, Friedman G, Azizkhan-Clifford J. 2011. Effects of non-thermal plasma on mammalian cells. PLoS ONE, 6, e16270.
Kaushik N K, Kaushik N, Park D, Choi E H. 2014. Altered antioxidant system stimulates dielectric barrier discharge plasma-induced cell death for solid tumor cell treatment. PLoS ONE, 9, e103349.
Kieft I E, Kurdi M, Stoffels E. 2006. Reattachment and apoptosis after plasma-needle treatment of cultured cells. IEEE Transactions on Plasma Science, 34, 1331–1336.
Lin A, Truong B, Patel S, Kaushik N, Choi E H, Fridman G, Fridman A, Miller V. 2017. Nanosecond-pulsed DBD plasma-generated reactive oxygen species trigger immunogenic cell death in A549 lung carcinoma cells through intracellular oxidative stress. International Journal of Molecular Sciences, 18, 966.
Ma C, Song H, Yu L, Guan K, Hu P, Li Y, Xia X, Li J, Jiang S, Li F. 2016. miR-762 promotes porcine immature Sertoli cell growth via the ring finger protein 4 (RNF4) gene. Scientific Reports, 6, 32783.
Ma X, Liao X, Lu L, Li S, Zhang L, Luo X. 2016. Determination of dietary iron requirements by full expression of iron-containing enzymes in various tissues of broilers. The Journal of Nutrition, 146, 2267–2273.
Makeyev E V, Maniatis T. 2008. Multilevel regulation of gene expression by microRNAs. Science, 319, 1789–1790.
Morita M, Gravel S P, Hulea L, Larsson O, Pollak M, St-Pierre J, Topisirovic I. 2015. mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle, 14, 473–480.
Nakai N, Fujita R, Kawano F, Takahashi K, Ohira T, Shibaguchi T, Nakata K, Ohira Y. 2014. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma. Journal of Physiological Sciences, 64, 365–375.
Smith B E, Braun R E. 2012. Germ cell migration across Sertoli cell tight junctions. Science, 338, 798–802.
Sonne S B, Dalgaard M D, Nielsen J E, Hoei-Hansen C E, Rajpert-De Meyts E, Gjerdrum L M, Leffers H. 2009. Optimizing staining protocols for laser microdissection of specific cell types from the testis including carcinoma in situ. PLoS ONE, 4, e5536.
Tang H, Li J, Liu X, Wang G, Luo M, Deng H. 2016. Down-regulation of HSP60 suppresses the proliferation of glioblastoma cells via the ROS/AMPK/mTOR pathway. Scientific Reports, 6, 28388.
Tanwar P S, Kaneko-Tarui T, Zhang L, Teixeira J M. 2012. Altered LKB1/AMPK/TSC1/TSC2/mTOR signaling causes disruption of Sertoli cell polarity and spermatogenesis. Human Molecular Genetics, 21, 4394–4405.
Zhang J J, Chandimali N, Kim N, Kang T Y, Kim S B, Kim J S, Wang X Z, Kwon T, Jeong D K. 2019. Demethylation and microRNA differential expression regulate plasma-induced improvement of chicken sperm quality. Scientific Reports, 9, 8865.
Zhang J J, Huynh D L, Chandimali N, Kang T Y, Kim N, Mok Y S, Kwon T, Jeong D K. 2018a. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens. Journal of Physics (D: Applied Physics), 51, 205201.
Zhang J J, Jo J O, Huynh D L, Ghosh M, Kim N, Lee S B, Lee H K, Mok Y S, Kwon T, Jeong D K. 2017. Lethality of inappropriate plasma exposure on chicken embryonic development. Oncotarget, 8, 85642–85654.
Zhang J J, Wang X Z, Luong Do H, Chandimali N, Kang T Y, Kim N, Ghosh M, Lee S B, Mok Y S, Kim S B, Kwon T, Jeong D K. 2018b. MicroRNA-7450 regulates non-thermal plasma-induced chicken Sertoli cell apoptosis via adenosine monophosphate-activated protein kinase activation. Scientific Reports, 8, 8761.
Zhang J J, Wang Y, Yang W R, Jeong D K, Wang X Z. 2015. MicroRNA-1285 regulates 17β-estradiol-inhibited immature boar Sertoli cell proliferation via adenosine monophosphate-activated protein kinase activation. Endocrinology, 156, 4059–4070.
Zorov D B, Juhaszova M, Sollott S J. 2014. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiological Reviews, 94, 909–950.

[1] Dong Yun, Wang Yi, Jin Feng-wei, Xing Li-juan, Fang Yan, Zhang Zheng-ying, ZOU Jun-jie, Wang Lei, Xu Miao-yun. Differentially expressed miRNAs in anthers may contribute to the fertility of a novel Brassica napus genic male sterile line CN12A[J]. >Journal of Integrative Agriculture, 2020, 19(7): 1731- 1742.
[2] LIANGYan , WANGXiao-jing , YANGJiao-fu , HAOXi-yan , BAYin-ma , CHENXian-wei WANGZhi-gang . Immune BlotAnalysis on Expression of the Mammalian Target of Rapamycin in Goat Fetal Fibroblasts with Recombinant Polyclonal Antibody[J]. >Journal of Integrative Agriculture, 2012, 12(6): 1002-1008.
No Suggested Reading articles found!