Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (2): 496-503    DOI: 10.1016/S2095-3119(21)63694-8
Special Issue: 动物科学合辑Animal Science
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
C-type natriuretic peptide stimulates chicken myoblast differentiation through NPRB/NPRC receptors and metabolism pathway
HUANG Hua-yun1*, LIANG Zhong1*, LIU Long-zhou1, 2, LI Chun-miao1, HUANG Zhen-yang1, WANG Qian-bao1, LI Shou-feng1, ZHAO Zhen-hua1
1 Jiangsu Institute of Poultry Science, Yangzhou 225125, P.R.China
2 College of Animal Science, Yangtze University, Jingzhou 8060550, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

【研究目的】肉鸡骨骼肌发育情况与肉产量及质量密切相关,而骨骼肌的发育主要依赖于成肌细胞的分化。利钠肽家族成员在哺乳动物骨骼肌的肌管形成及脂肪氧化过程中起重要作用,而C-型利钠肽激素CNP)作为利钠肽家族的重要成员之一,它对骨骼肌的发育调控作用及机制尚未见相关报道,为更好的理解利钠肽家族在骨骼肌发育中的作用及机制,本研究通过外源10-7 mol L-1CNP诱导鸡的原代成肌细胞,探讨CNP对鸡成肌细胞分化的作用及机制。【研究方法】利用CCK8EDU染色法检测成肌细胞的增殖,Q-PCR技术检测相关基因的表达,转录组测序及生物信息学分析筛选成肌细胞中响应CNP调控的差异基因及显著富集的信号通路。【研究结果】结果表明:与对照组相较,外源添加CNP后,成肌细胞增殖能力显著增强P < 0.05;成肌细胞分化的标志基因MYODMYOG表达显著上升(P < 0.05);CNP的特异性受体NPRBNatriuretic peptide receptor B) 和清除性受体NPRCNatriuretic peptide receptor C)的表达显著上调(P < 0.05);转录组测序分析结果表明,142个差异基因(上调基因84个,下调基因58个)响应CNP对成肌细胞分化的调控作用(P < 0.05);142差异表达基因显著富8个信号通路(P < 0.05),代谢通路里富集了16个差异表达基因,其中phospholipase C delta 4(PLCD4)、phospholipase C beta 2(PLCB2)、phosphoglycerate mutase 1(PGAM1)、 creatine kinase B(CKB)、 peroxiredoxin 6(PRDX6)和 CD386个基因与骨骼肌的发育密切相关研究结论】综上所述,CNP通过上调NPRB/NPRC及富集在代谢通路里的关键基因(PLCD4 PLCβ2 PGAM1 CKB PRDX6 CD38)促进成肌细胞的分化。 性】本研究利用功能基因验证法和高通量转录组测序法相结合的方法,首次系统阐述了CNP对成肌细胞分化的调控作用及机制,为更好地理解利钠肽家族在骨骼肌发育中的作用及机制奠定了基础。



Abstract  Skeletal muscle development is closely related with the amount of meat production and its quality in chickens.  Natriuretic peptides (NPs) play an important role in myotube formation and fat oxidation of skeletal muscle in animals.  The effect of C-type natriuretic peptide (CNP), an important member of the NPs, and its underlying molecular mechanisms in skeletal muscle are incompletely understood.  Treatment of myoblasts with CNP led to enhanced proliferation/differentiation and significantly upregulated (P<0.05) mRNA expression of the CNP receptors natriuretic peptide receptor B (NPRB) and the clearance receptor C (NPRC).  In cells exposed to CNP, 142 differentially expressed genes (84 up-regulation and 58 down-regulation) (P<0.05) were identified by RNA-sequencing compared with those in control cells.  Sixteen genes were significantly enriched (P<0.05) in the metabolic pathway, and six of them (phospholipase C β4, phospholipase C β2, phosphoglycerate mutase 1, creatine kinase B, peroxiredoxin 6 and CD38) were closely related to skeletal muscle development and differentially expressed.  In conclusion, CNP stimulated differentiation of myoblasts by upregulating expression of the NPRB and NPRC receptors and enriching key genes in the metabolic pathway.  
Keywords:  CNP       NPRB/NPRC receptor       myoblast differentiation       metabolism pathway       chicken

  
Received: 02 September 2020   Accepted: 03 April 2021
Fund: The research was supported by the Natural Science Foundation of Jiangsu Province, China (BK20191217), the Independent Innovation Fund Project of Agricultural Science and Technology of Jiangsu (CX(20)2012), the China Agriculture Research System of MOF and MARA (CARS-41-Z05), the Key Laboratory of Poultry Genetics and Breeding in Jiangsu (JQLAB-ZZ-201705 and JQLAB-ZZ-202008), and the Special Funds for Transformation of Scientific and Technological Projects in Jiangsu Province (BA2019049). 
About author:  Huang Hua-yun, E-mail: huanghuayun520@163.com; Correspondence Zhao Zhen-hua, Tel/Fax: +86-514-85599073, E-mail: zzh0514@163.com * These authors contributed equally to this study.

Cite this article: 

HUANG Hua-yun, LIANG Zhong, LIU Long-zhou, LI Chun-miao, HUANG Zhen-yang, WANG Qian-bao, LI Shou-feng, ZHAO Zhen-hua. 2022. C-type natriuretic peptide stimulates chicken myoblast differentiation through NPRB/NPRC receptors and metabolism pathway. Journal of Integrative Agriculture, 21(2): 496-503.

Alan T, Tufan A C. 2008. C-type natriuretic peptide regulation of limb mesenchymal chondrogenesis is accompanied by altered N-cadherin and collagen type X-related functions. Journal of Cellular Biochemistry, 105, 227–235. 
De Bold A J, Borenstein H B, Veress A T, Sonneberg H. 2001. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rats. Journal of the American Society of Nephrology, 12, 403–409.
Chusho H, Tamura N, Ogawa Y, Yasoda A, Suda M, Miyazawa T, Nakamura A K, Nakao K, Kurihara T, Komatsu Y, Itho H, Tanaka K, Saito Y, Katsuki M, Nakao K. 2001. Dwarfism and early death in mice lacking C-type natriuretic peptide. Proceedings of the National Academy of Sciences of the United States of America, 98, 4016–4021.
Coue M, Badin P M, Vila I K, Laurens C, Louche K, Marques M A, Bourlier V, Mouisel E, Tavernier G, Rustan A C, Galgni J E, Joanisse D R, Smith S R, Langin D, Moro C. 2015. Defective natriuretic peptide receptor signaling in skeletal muscle links obesity to type 2 diabetes. Diabetes, 6, 4033–4045.
Engeli S, Birkenfeld A L, Banin P M, Bourlier V, Louche K, Viguerie N, Thalamas C, Montastier E, Larrouy D, Harant I, De Glisezinski I, Lieske S, Reinke J, Beckmann B, Langin D, Jordan J, Moro C. 2012. Natriuretic peptides enhance the oxidative capacity of human skeletal muscle. Journal of Clinical Investigation, 122, 4675–4679. 
Fukami K, Inoue T, Kurokawa M, Fissore R A, Nakao K, Nagano K, Nakamura Y, Takenaka K, Yoshida N, Mikoshiba K, Takenawa T. 2003. Phospholipase Cdelta4: From genome structure to physiological function. Advances in Enzyme Regulation, 43, 87–106.
GB/T 24707–2009. 2009. Shaobo chicken (commercial line). Standardization Administration of the People’s Republic of China. (in Chinese)
Huang H Y, Liu R R, Zhao G P, Li Q H, Zheng M Q, Zhang J J, Li S F, Liang Z, Wen J. 2015. Integrated analysis of microRNA and mRNA expression profiles in abdominal adipose tissues in chickens. Scientific Reports, 5, 16132.
Ishikawa K, Hara T, Kato K, Shimomura T, Omori K. 2019. Involvement of natriuretic peptide system in C2C12 myocytes. Molecular and Cellular Biochemistry, 456, 15–27.
Kojima M, Minamino N, Kangawa K, Matsuo H. 1990. Cloning and sequence analysis of a cDNA encoding a precursor for rat C-type natriuretic peptide (CNP). FEBS Letters, 276, 209–2013.
Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X. 2014. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death & Disease, 5, e1347. 
Maack T, Suzuki M, Almeida F A, Nussenzveig D, Scarborough R M, Mcenroe G A, Lewicki J A. 1987. Physiological role of silent receptors of atrial natriuretic factor. Science, 238, 675–678.
Mao X, Cai T, Olyarchuk J G, Wei L. 2005. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics, 21, 3787–3793.
Miao Y, Yang J, Xu Z, Jing L, Zhao S, Li X. 2015. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide. International Journal of Biological Science, 16, 7976–7994.
Nakao K, Yasoda A, Ebihara K, Hosoda K, Mukoyama M. 2009. Translational research of novel hormones: Lessons from animal models and rare human diseases for common human diseases. Journal of Molecular Medicine, 87, 1029–1039.
Nakao K, Osawa K, Yasoda A, Yamanaka S, Fujii T, Kondo E, Koyama N, Kanamoto N, Miura M, Kuwahara K, Akiyama H, Bessho K, Nakao K. 2015. The local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth. Scientific Reports, 5, 10554.
Park D R, Nam T S, Kim Y W, Lee S H, Kim U H. 2018. CD38-cADPR-SERCA signaling axis determines skeletal muscle contractile force in response to beta-adrenergic stimulation. Cellular Physiology and Biochemisty, 46, 2017–2030.
Perry R L, Rudnick M A. 2000. Molecular mechanisms regulating myogenic determination and differentiation. Frontiers in Bioscience (Landmark), 5, D750–D767.
Potter L R, Abbey-Hosch S, Dickey D M. 2006. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine Review, 27, 47–72.
Simionescu-Bankston A, Pichavant C, Canner J P, Apponi L H, Wang Y, Steeds C, Olthoff J T, Belanto J J, Ervasti J M, Pavlath G K. 2015. Creatine kinase B is necessary to limit myoblast fusion during myogenesis. American Journal of Physiology (Cell Physiology), 308, C919–C931. 
Sudoh T, Kangawa K, Minamino N, Matsuo H. 1988. A new natriuretic peptide in porcine brain. Nature, 332, 78–81.
Suga S, Nakao K, Hosoda K, Mukoyama M, Ogawa Y, Shirakami G, Arai H, Saito Y, Kambayashi Y, Inouye K. 1992. Receptor selectivity of natriuretic peptide family, atrial natriuretic peptide, brain natriuretic peptide, and C-type natriuretic peptide. Endocrinology, 130, 229–239.
Takei Y. 2000. Structural and functional evolution of the natriuretic peptide system in vertebrates. International Review of Cytology (A Survey of Cell Biology), 194, 1–66.
Teltathum T, Mekchay S. 2009. Proteome changes in Thai indigenous chicken muscle during growth period. International Journal of Biological Sciences, 5, 679–685.
Toop T, Donald J A. 2004. Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: A review. Journal of Comparative Physiology (B: Biochemical Systems and Environmental Physiology), 174, 189–204.
Verboven K, Hansen D, Jocken J W E, Blaak E E. 2017. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obesity Reviews, 18, 1243–1259. 
Wu J, Mao X, Cai T, Luo J, Wei L. 2006 KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Research, 34, W720–W724.
Wu X, Ji P, Zhang, L, Bu, G, Gu H, Wang X, Xiong Y, Zuo B. 2015. The expression of porcine Prdx6 gene is up-regulated by C/EBP β and CREB. PLoS ONE, 10, e0144851.

No related articles found!
No Suggested Reading articles found!