Please wait a minute...
Journal of Integrative Agriculture  2020, Vol. 19 Issue (2): 561-569    DOI: 10.1016/S2095-3119(19)62673-0
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Application of droplet digital PCR in detection of seed-transmitted pathogen Acidovorax citrulli
LU Yu1, 2*, ZHANG Hai-jun1, 2*, ZHAO Zi-jing3, WEN Chang-long1, WU Ping1, 2, SONG Shun-hua1, 2, YU Shuan-cang1, Luo Lai-xin3, XU Xiu-lan1, 2  
1 Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P.R.China
2 Supervision, Inspection and Test Center of Vegetable Seed Quality of Ministry of Agriculture and Rural Affairs, Beijing 100097, P.R.China
3 Beijing Key Laboratory of Seed Disease Testing and Control, College of Plant Pathology, China Agricultural University, Beijing 100093, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
Bacterial fruit blotch caused by Acidovorax citrulli is a serious threat to cucurbit industry worldwide.  The pathogen is seed-transmitted, so seed detection to prevent distribution of contaminated seed is crucial in disease management.  In this study, we adapted a quantitative real-time PCR (qPCR) assay to droplet digital PCR (ddPCR) format for A. citrulli detection by optimizing reaction conditions.  The performance of ddPCR in detecting A. citrulli pure culture, DNA, infested watermelon/melon seed and commercial seed samples were compared with multiplex PCR, qPCR, and dilution plating method.  The lowest concentrations detected (LCD) by ddPCR reached up to 2 fg DNA, and 102 CFU mL–1 bacterial cells, which were ten times more sensitive than those of the qPCR.  When testing artificially infested watermelon and melon seed, 0.1% infestation level was detectable using ddPCR and dilution plating method.  The 26 positive samples were identified in 201 commercial seed samples through ddPCR, which was the highest positive number among all the methods.  High detection sensitivity achieved by ddPCR demonstrated a promising technique for improving seed-transmitted pathogen detection threshold in the future.
 
Keywords:  bacterial fruit blotch        Acidovorax citrulli        droplet digital PCR        seed detection        quantitative real-time PCR  
Received: 20 December 2018   Accepted:
Fund: This project is supported by the the National Key Research and Development Program of China (2017YFD0201602), the National Natural Science Foundation of China (31401704), and the Beijing Academy of Agriculture and Forestry Foundation, China (KJCX20180203).
Corresponding Authors:  Correspondence XU Xiu-lan, Tel: +86-10-51503078, E-mail: xuxiulan@nercv.org    
About author:  LU Yu, Tel: +86-10-51503078, E-mail: luyucau@126.com; ZHANG Hai-jun, Tel: +86-10-51503078, E-mail: zhanghaijun@nercv.org; * These authors contributed equally to this study.

Cite this article: 

LU Yu, ZHANG Hai-jun, ZHAO Zi-jing, WEN Chang-long, WU Ping, SONG Shun-hua, YU Shuan-cang, Luo Lai-xin, XU Xiu-lan . 2020.

Application of droplet digital PCR in detection of seed-transmitted pathogen Acidovorax citrulli
. Journal of Integrative Agriculture, 19(2): 561-569.

Bahar O, Fuente L D L, Burdman S. 2010. Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. Journal of Fems Microbiology Letters, 312, 33–39.
Bateman A C, Greninger A L, Atienza E E, Limaye A P, Jerome K R, Cook L. 2017. Quantification of BK virus standards by quantitative real-time PCR and droplet digital PCR is confounded by multiple virus populations in the WHO BKV international standard. Journal of Clinical Chemistry, 63, 761.
Burdman S, Walcott R. 2012. Acidovorax citrulli: Generating basic and applied knowledge to tackle a global threat to the cucurbit industry. Journal of Molecular Plant Pathology, 13, 805–815.
Choi O, Park J J, Kim J. 2016. Tetranychus urticae (Acari: Tetranychidae) transmits Acidovorax citrulli, causal agent of bacterial fruit blotch of watermelon. Journal of Experimental & Applied Acarology, 69 , 445–451.
Dobnik D, Štebih D, Blejec A, Morisset D, ?el J. 2016. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection. Scientific Reports, 6, doi: 10.1038/srep35451
Dreo T, Pirc M, Ramšak ?, Pavši? J, Milavec M, Zel J, Gruden K. 2014. Optimising droplet digital PCR analysis approaches for detection and quantification of bacteria: A case study of fire blight and potato brown rot. Journal of Analytical and Bioanalytical Chemistry, 406, 6513–6528.
Feng J J, Li J Q, Walcott R R, Zhang G M, Luo L X, Kang L, Zheng Y, Schaad N W. 2013. Advances in detection of Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbits. Seed Science and Technology, 41, 1–15.
Giovanardi D, Sutton S A, Stefani E, Walcott R R. 2018. Factors influencing the detection of, Acidovorax citrulli, in naturally contaminated cucurbitaceous seeds by PCR-based assays. Seed Science and Technology, 46, 93–106.
Ha Y, Fessehaie A, Ling K S, Wechter W P, Keinath A, Walcott R R. 2009. Simultaneous detection of Acidovorax avenae subsp. citrulli and Didymella bryoniae in cucurbit seedlots using magnetic capture hybridization and real-time polymerase chain reaction. Journal of Phytopathology, 99, 666–678.
Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C, Kitano T K, Hodel M R, Petersen J F, Wyatt P W, Steenblock E R, Shah P H, Bousse L J, Troup C B, Mellen J C, Wittmann D K, et al. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Journal of Analytical Chemistry, 83, 8604–8610.
ISF (International Seed Federation). 2018. Online statistic database: Method for the detection of Acidovorax citrulli in seed of cucurbit crops. [2018-10-13]. https://www.worldseed.org/wp-content/uploads/2018/08/Cucurbits_Ac_Aug2018.pdf 
Koepfli C, Nguitragool W, Hofmann N E, Robinson L J, Ome-Kaius M, Sattabongkot J, Felger I, Mueller I. 2016. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Scientific Reports, 6, doi: 10.1038/srep39183
Pinheiro L B, Coleman V A, Hindson C M, Herrmann J, Hindson B J, Bhat S, Emslie K R. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Journal of Analytical Chemistry, 84, 1003–1011.
Rane K K, Latin R X. 1992. Bacterial fruit blotch of watermelon: Association of the pathogen with seed. Journal of Plant Disease, 76, 509–512.
Schaad W, Song Y, Hatziloukas E. 1999. An improved semiselective agar medium for Acidovorax avenae subsp.citrulli. Phytopathology, 89, S68–S69.
Walcott R R, Fessehaie A, Castro A C. 2004. Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. Journal of Phytopathology, 152, 277–285.
Walcott R R, Gitaitis R D. 2007. Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Disease, 84, 470–474.
Walcott R R, Gitaitis R D, Castro A C. 2003. Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology, 93, 528–34.
Wall G C, Santos V M. 1988. A new bacterial disease of watermelon in the Mariana Islands. Phytopathology, 78, 1–9.
Zhang J, Tian Q, Liu F Q, Zhu S F, Zhao W J. 2013. Six seedborne bacterial pathogens screening with chromogenic DNA macroarray in melon crops. Journal of Agricultural Biotechnology, 21, 120–126. (in Chinese)
Zhao Y, Xia Q, Yin Y P, Wang Z K. 2016. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection of Xanthomonas citri subsp. citri. PLoS ONE, 11, e0159004.
Zhong X, Liu X L, Lou B H, Zhou C Y, Wang X F. 2018. Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus’. Journal of Integrative Agriculture, 17, 483–487.
[1] ZHONG Xi, LIU Xue-lu, LOU Bing-hai, ZHOU Chang-yong, WANG Xue-feng . Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus’[J]. >Journal of Integrative Agriculture, 2018, 17(2): 483-487.
[2] ZHAO Mei-ai, LEI Zhen, PEI Yu-he, SHAO Xiao-yu, GUO Xin-mei, SONG Xi-yun? . Comparative proteomics analysis of maize (Zea mays) leaves infected by small brown planthopper (Laodelphax striatellus)[J]. >Journal of Integrative Agriculture, 2018, 17(04): 796-805.
[3] TIAN Qing-song, WANG Shu-yan, DU Jian-cai, WU Zhi-juan, LI Xiao-quan, HAN Bing. Reference genes for quantitative real-time PCR analysis and quantitative expression of P5CS in Agropyron mongolicum under drought stress[J]. >Journal of Integrative Agriculture, 2016, 15(9): 2097-2104.
No Suggested Reading articles found!