Please wait a minute...
Journal of Integrative Agriculture  2021, Vol. 20 Issue (8): 2227-2239    DOI: 10.1016/S2095-3119(20)63477-3
Special Issue: 动物医学合辑Veterninary Medicine
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Kaempferol inhibits Pseudorabies virus replication in vitro through regulation of MAPKs and NF-κB signaling pathways
CHEN Xu*, CHEN Ya-qin*, YIN Zhong-qiong*, WANG Rui, HU Huai-yue, LIANG Xiao-xia, HE Chang-liang, YIN Li-zi, YE Gang, ZOU Yuan-feng, LI Li-xia, TANG Hua-qiao, JIA Ren-yong, SONG Xu
Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611100, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      


方法以阿昔洛韦为阳性对照,CCK-8法测定不同浓度山奈酚对PK-15细胞的毒性,计算半数毒性浓度(CC50)以及山奈酚对病毒所致细胞病变的抑制,计算半数抑制浓度(IC50)。通过荧光定量PCR法测定山奈酚在病毒感染不同阶段(对细胞的保护作用和抗病毒吸附、穿入和复制)以及在感染后不同时间点(2、4、816 h分别加入药物后对病毒复制的抑制活性。采用Western blotting 和荧光定量PCR法检测分别检测山奈酚对NF-κBMAPKs信号通路的影响及其下游靶基因的转录水平的变化。

结果:山奈酚在PK-15细胞上的CC50IC50分别是0.2130.026 mol L-1,其选择指数(SI)8.33抗病毒活性优于阿昔洛韦(IC50为0.055 mol L-1SI6.34。作用方式研究表明山奈酚显著抑制病毒的穿入和复制阶段,与病毒组相比,病毒基因拷贝数分别减少了约4倍和30倍。山奈酚在病毒感染后16 h内加入均能显著抑制病毒的增殖,与病毒组相比,在病毒感染后2h加入,病毒基因拷贝数减少约15倍。山奈酚显著调节病毒感染导致NF-κBMAPKs信号通路的激活及其下游靶基因MAPKs(ATF-2c-JunNF-κB (IL-1α,IL-1βIL-2)的转录水平。



Pseudorabies virus (PRV), in the family Herpesviridae, is a pathogen of Aujeszky’s disease, which causes great economic losses to the pig industry.  Recent outbreaks of Pseudorabies imply that new control measures are urgently needed.  The present study shows that kaempferol is a candidate drug for controlling PRV infection, as it possesses the ability to inhibit PRV replication in a dose-dependent manner in vitro.  Kaempferol at a concentration of 52.40 μmol L–1 could decrease PRV-induced cell death by 90%.  With an 50% inhibitory concentration (IC50) value of 25.57 μmol L–1, kaempferol was more effective than acyclovir (positive control) which has an IC50 value of 54.97 μmol L–1.  A mode of action study indicated that kaempferol inhibited viral penetration and replication stages, decreasing viral loads by 4- and 30-fold, respectively.  Addition of kaempferol within 16 h post infection (hpi) could significantly inhibit virus replication, and viral genome copies were decreased by almost 15-fold when kaempferol was added at 2 hpi.  Kaempferol regulated the NF-κB and MAPKs signaling pathways involved in PRV infection and changed the levels of the target genes of the MAPKs (ATF-2 and c-Jun) and NF-κB (IL-1α, IL-1β and IL-2) signaling pathways.  The findings of the current study suggest that kaempferol could be an alternative measure to control PRV infection.
Keywords:  kaempferol        antiviral activity        Pseudorabies virus  
Received: 10 July 2020   Accepted:
Fund: This work was supported by the Program of Sichuan Veterinary Medicine and Drug Innovation Group of China Agricultural Research System (SCCXTD-2020-18) and the Science and Technology Project of Sichuan Province, China (2018NZ0043, 2018NZ0064 and 2018HH0076).
Corresponding Authors:  Correspondence SONG Xu, Tel: +86-28-86291176, E-mail:    
About author:  CHEN Xu, E-mail:; * These authors contributed equally to this study.

Cite this article: 

CHEN Xu, CHEN Ya-qin, YIN Zhong-qiong, WANG Rui, HU Huai-yue, LIANG Xiao-xia, HE Chang-liang, YIN Li-zi, YE Gang, ZOU Yuan-feng, LI Li-xia, TANG Hua-qiao, JIA Ren-yong, SONG Xu. 2021. Kaempferol inhibits Pseudorabies virus replication in vitro through regulation of MAPKs and NF-κB signaling pathways. Journal of Integrative Agriculture, 20(8): 2227-2239.

Adamson A L, Darr D, Holley-Guthrie E, Johnson R A, Mauser A, Swenson J, Kenney S. 2000. Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. Journal of Virology, 74, 1224–1233.
Amoros M, Simões C M, Girre L, Sauvager F, Cormier M. 1992. Synergistic effect of flavones and flavonols against herpes simplex virus type 1 in cell culture. Comparison with the antiviral activity of propolis. Journal of Natural Products, 55, 1732–1740.
An T Q, Peng J M, Tian Z J, Zhao H Y, Li N, Liu Y M, Chen J Z, Leng C L, Sun Y, Chang D, Tong G Z. 2013. Pseudorabies virus variant in Bartha-K61-vaccinated pigs, China, 2012. Emerging Infectious Diseases, 19, 1749–1755.
Boadella M, Gortázar C, Vicente J, Ruiz-Fons F. 2012. Wild boar: An increasing concern for Aujeszky’s disease control in pigs? BMC Veterinary Research, 8, 7.
Chang C D, Lin P Y, Liao M H, Chang C I, Hsu J L, Yu F L, Wu H Y, Shih W L. 2013. Suppression of apoptosis by pseudorabies virus Us3 protein kinase through the activation of PI3-K/Akt and NF-κB pathways. Research in Veterinary Science, 95, 764–774.
Cheung A K. 1989. DNA nucleotide sequence analysis of the immediate-early gene of pseudorabies virus. Nucleic Acids Research, 17, 4637–4646.
Cheung A K, Chen Z, Sun Z, McCullough D. 2000. Pseudorabies virus induces apoptosis in tissue culture cells. Archives of Virology, 145, 2193–2200.
Debiaggi M, Tateo F, Pagani L, Luini M, Romero E. 1990. Effects of propolis flavonoids on virus infectivity and replication. Microbiologica, 13, 207–213.
Elion G B. 1983. The biochemistry and mechanism of action of acyclovir. The Journal of Antimicrobial Chemotherapy, 12(Suppl. B), 9–17.
Gao Z, Dou Y, Chen Y, Zheng Y. 2014. MicroRNA roles in the NF-κB signaling pathway during viral infections. BioMed Research International, 2014, 436097.
Garcia-Closas R, Gonzalez C A, Agudo A, Riboli E. 1999. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spain. Cancer Causes & Control (CCC), 10, 71–75.
Gates M A, Tworoger S S, Hecht J L, De Vivo I, Rosner B, Hankinson S E. 2007. A prospective study of dietary flavonoid intake and incidence of epithelial ovarian cancer. International Journal of Cancer, 121, 2225–2232.
Goodkin M L, Ting A T, Blaho J A. 2003. NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. Journal of Virology, 77, 7261–7280.
Hahn E C, Fadl-Alla B, Lichtensteiger C A. 2010. Variation of Aujeszky’s disease viruses in wild swine in USA. Veterinary Microbiology, 143, 45–51.
Hakim M S, Ding S, Chen S, Yin Y, Su J, van der Woude C J, Fuhler G M, Peppelenbosch M P, Pan Q, Wang W. 2018. TNF-α exerts potent anti-rotavirus effects via the activation of classical NF-κB pathway. Virus Research, 253, 28–37.
Hiscott J, Marois J, Garoufalis J, D’Addario M, Roulston A, Kwan I, Pepin N, Lacoste J, Nguyen H, Bensi G. 1993. Characterization of a functional NF-kappa B site in the human interleukin 1 beta promoter: Evidence for a positive autoregulatory loop. Molecular and Cellular Biology, 13, 6231–6240.
Hoyos B, Ballard D W, Böhnlein E, Siekevitz M, Greene W C. 1989. Kappa B-specific DNA binding proteins: Role in the regulation of human interleukin-2 gene expression. Science. 244, 457–460.
Hu R M, Zhou Q, Song W B, Sun E C, Zhang M M, He Q G, Chen H C, Wu B, Liu Z F. 2015. Novel pseudorabies virus variant with defects in TK, gE and gI protects growing pigs against lethal challenge. In: Proceedings of the 16th Symposium of Animal Infectious Diseases Society of China. Vaccine, China. (in Chinese)
Imran M, Rauf A, Shah Z A, Saeed F, Imran A, Arshad M U, Ahmad B, Bawazeer S, Atif M, Peters D G, Mubarak M S. 2019a. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytotherapy Research, 33, 263–275.
Imran M, Salehi B, Sharifi-Rad J, Aslam Gondal T, Saeed F, Imran A, Shahbaz M, Tsouh Fokou P V, Umair Arshad M, Khan H, Guerreiro S G, Martins N, Estevinho L M. 2019b. Kaempferol: A Key emphasis to its anticancer potential. Molecules, 24, 2277.
Kampkötter A, Gombitang Nkwonkam C, Zurawski R F, Timpel C, Chovolou Y, Wätjen W, Kahl R 2007. Effects of the flavonoids kaempferol and fisetin on thermotolerance, oxidative stress and FoxO transcription factor DAF-16 in the model organism Caenorhabditis elegans. Archives of Toxicology, 81, 849–858.
Karger A, Mettenleiter T C. 1993. Glycoproteins gIII and gp50 play dominant roles in the biphasic attachment of pseudorabies virus. Virology, 194, 654–664.
Kido H. 2015. Influenza virus pathogenicity regulated by host cellular proteases, cytokines and metabolites, and its therapeutic options. Proceedings of the Japan Academy (Series B), 91, 351–368.
Klupp B G, Hengartner C J, Mettenleiter T C, Enquist L W. 2004. Complete, annotated sequence of the pseudorabies virus genome. Journal of Virology, 78, 424–440.
Lam T, Rotunno M, Randi G, Bagnardi V, Subar A, Landi M T. 2008. Intake of quercetin and isothiocyanates and risk of lung cancer: A population-based case-control study.   Cancer Research, 68.
Lee S M, Kleiboeker S B. 2005. Porcine arterivirus activates the NF-kappaB pathway through IkappaB degradation. Virology, 342, 47–59.
Lim Y H, Kim I H, Seo J J. 2007. In vitro activity of kaempferol isolated from the Impatiens balsamina alone and in combination with erythromycin or clindamycin against Propionibacterium acnes. Journal of Microbiology (Seoul, Korea), 45, 473–477.
Ludwig S. 2010. Influenza viruses and map kinase cascades - novel targets for an antiviral intervention? Signal Transduction, 7, 81–88.
Luo Y, Li N, Cong X, Wang C H, Du M, Li L, Zhao B, Yuan J, Liu D D, Li S, Li Y, Sun Y, Qiu H J. 2014. Pathogenicity and genomic characterization of a pseudorabies virus variant isolated from Bartha-K61-vaccinated swine population in China. Veterinary Microbiology, 174, 107–115.
MacDiarmid S. 2000. Aujeszky’s disease eradication in New Zealand. Australian Veterinary Journal, 78, 470–471.
Mahmood N, Piacente S, Pizza C, Burke A, Khan A I, Hay A J. 1996. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascena. Biochemical and Biophysical Research Communications, 229, 73–79.
Masot A J, Gil M, Risco D, Jiménez O M, Núñez J I, Redondo E. 2017. Pseudorabies virus infection (Aujeszky’s disease) in an Iberian lynx (Lynx pardinus) in Spain: A case report. BMC Veterinary Research, 13, 6.
Medeiros K C, Faustino L, Borduchi E, Nascimento R J, Silva T M, Gomes E, Piuvezam M R, Russo M. 2009. Preventive and curative glycoside kaempferol treatments attenuate the TH2-driven allergic airway disease. International Immunopharmacology, 9, 1540–1548.
Meng Q, Xia Y. 2011. c-Jun, at the crossroad of the signaling network. Protein & Cell, 2, 889–898.
Mettenleiter T C. 1991. Molecular biology of pseudorabies (Aujeszky’s disease) virus. Comparative Immunology, Microbiology and Infectious Diseases, 14, 151–163.
Mettenleiter T C. 1994. Initiation and spread of alpha-herpesvirus infections. Trends Microbiol, 2, 2.
Mettenleiter T C. 2000. Aujeszky’s disease (pseudorabies) virus: The virus and molecular pathogenesis - state of the art, June 1999. Veterinary Research, 31, 99–115.
Min B S, Tomiyama M, Ma C M, Nakamura N, Hattori M. 2010. Kaempferol acetylrhamnosides from the rhizome of Dryopteris crassirhizoma and their inhibitory effects on three different activities of human immunodeficiency virus-1 reverse transcriptase. Chemical & Pharmaceutical Bulletin, 49, 546–550. (in Japanese)
Min J P, Lee E K, Heo H S, Kim M S, Sung B, Mi K K. 2009. The anti-inflammatory effect of kaempferol in aged kidney tissues: The involvement of nuclear factor-kappaB via nuclear factor-inducing kinase/IkappaB kinase and mitogen-activated protein kinase pathways. Journal of Medicinal Food, 12, 351–358.
Mori N, Prager D. 1996. Transactivation of the interleukin-1alpha promoter by human T-cell leukemia virus type I and type II Tax proteins. Blood, 87, 3410–3417.
Müller T, Bätza H J, Schlüter H, Conraths F J, Mettenleiter T C. 2003. Eradication of Aujeszky’s disease in Germany. Journal of Veterinary Medicine (B: Infectious Diseases and Veterinary Public Health), 50, 207–213.
Nöthlings U, Murphy S P, Wilkens L R, Henderson B E, Kolonel L N. 2007. Flavonols and pancreatic cancer risk the multiethnic cohort study. American Journal of Epidemiology, 166, 924–931.
Pahl H L. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853–6866.
Planz O. 2013. Development of cellular signaling pathway inhibitors as new antivirals against influenza. Antiviral Research, 98, 457–468.
Pomeranz L E, Reynolds A E, Hengartner C J. 2005. Molecular biology of pseudorabies virus: Impact on neurovirology and veterinary medicine. Microbiology and Molecular Biology Reviews (MMBR), 69, 462–500.
Reed L J. 1938. A simple method of estimating fifty percent endpoints. American Journal of Epidemiology, 27, doi:  10.1080/14737167.2018.1430571.
Riteau B. 2006. Trypsin increases pseudorabies virus production through activation of the ERK signalling pathway. The Journal of General Virology, 87, 1109–1121.
Robin V, Irurzun A, Amoros M, Boustie J, Carrasco L. 2001. Antipoliovirus flavonoids from Psiadia dentata. Antiviral Chemistry & Chemotherapy, 12, 283–291.
Salehi B, Martorell M, Arbiser J L, Sureda A, Martins N, Maurya P K. 2018. Antioxidants: Positive or negative actors? Biomolecules, 8,124.
Santos J, Monte A, Lins T, Barberino R, Menezes V, Gouveia B. 2019. Kaempferol can be used as the single antioxidant in the in vitro culture medium, stimulating sheep secondary follicle development through the phosphatidylinositol 3-kinase signaling pathway. Theriogenology, 136, 86–94.
Serfling E, Barthelmäs R, Pfeuffer I, Schenk B, Zarius S, Swoboda R. 1989. Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocytes. The EMBO Journal, 8, 465–473.
Sharma W N, Krishnan H H, Naranatt P P, Zeng L, Smith M S, Chandran B. 2005. ERK1/2 and MEK1/2 induced by Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) early during infection of target cells are essential for expression of viral genes and for establishment of infection. Journal of Virology, 79, 10308–10337.
Somerset S M, Johannot L. 2008. Dietary flavonoid sources in Australian adults. Nutrition and Cancer, 60, 442–449.
Sun Y, Liu W Z, Liu T, Feng X, Zhou H F. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Research, 35, 600–604.
Sun Y, Luo Y, Wang C H, Yuan J, Li N, Song K, Qiu H J. 2016. Control of swine pseudorabies in China: Opportunities and limitations. Veterinary Microbiology, 183, 119–124.
Tong G Z, Chen H C. 1999. Epidemic present status and prophylactico-therapeutic measures of pseudorabies taken in China. Chinese Journal of Veterinary Science, 019, 1–2.(in Chinese)
Wang L, Tu Y C, Lian T W, Hung J T, Yen J H, Wu M J. 2006. Distinctive antioxidant and antiinflammatory effects of flavonols. Journal of Agricultural and Food Chemistry, 54, 9798–9804.
Xu J, Yin Z, Li L, Cheng A, Jia R, Song X, Lu H, Dai S, Lv C, Liang X, He C, Zhao L, Su G, Ye G, Shi F. 2013. Inhibitory effect of resveratrol against duck enteritis virus in vitro. PLoS ONE, 8, e65213.
Xu Y P, Qiu Y, Zhang B, Chen G, Chen Q, Wang M, Mo F, Xu J, Wu J, Zhang R R, Cheng M L, Zhang N N, Lyu B, Zhu W L, Wu M H, Ye Q, Zhang D, Man J H, Li X F, Cui J, et al. 2019. Zika virus infection induces RNAi-mediated antiviral immunity in human neural progenitors and brain organoids. Cell Research, 29, 265–273.
Yeh C J, Lin P Y, Liao M H, Liu H J, Lee J W, Chiu S J, Hsu H Y, Shih W L. 2008. TNF-α mediates pseudorabies virus-induced apoptosis via the activation of p38 MAPK and JNK/SAPK signaling. Virology, 381, 55–66.
Zhang R, Ai X, Duan Y, Xue M, He W, Wang C. 2017. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-κB and MAPK signaling pathways. Biomedicine & Pharmacotherapy (Biomedecine & Pharmacotherapie), 89, 660–672.
Zhao X, Cui Q, Fu Q, Song X, Jia R, Yang Y, Zou Y, Li L, He C, Liang X, Yin L, Lin J, Ye G, Shu G, Zhao L, Shi F, Lv C, Yin Z. 2017. Antiviral properties of resveratrol against pseudorabies virus are associated with the inhibition of IκB kinase activation. Scientific Reports, 7, 8782.
No related articles found!
No Suggested Reading articles found!