Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3576-3591    DOI: 10.1016/j.jia.2024.08.001
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions

Yitong He1, 2, Guanjin Wang2, 3, Yonglin Ren2, Shan Gao4, Dong Chu1#, Simon J. Mckirdy2#

1 Shandong Engineering Research Centre for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China 
2 Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
3 School of Information Technology, Murdoch University, Perth, WA 6150, Australia
4 Hebei Dahaituo National Nature Reserve Management Centre, Chicheng 075500, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

马铃薯孢囊线虫(PCNs)是马铃薯生产的重大威胁,在许多国家造成了严重危害。鉴于气候变化对害虫入侵和分布模式的深远影响,预测PCNs在未来气候条件下的分布对于实施有效的生物安全战略至关重要。机器学习(ML),特别是集成模型,凭借其从复杂数据集中学习和预测的能力,已成为预测物种分布的强大工具。本研究旨在利用机器学习技术预测气候变化背景下的PCNs分布,为入侵风险评估提供科学依据。为确保预测的准确性,我们首先利用全球气候模型生成一致的气候预测因子,以消除因预测因子差异带来的不确定性然后,使5个机器学习算法分别构建单算法集成模型(ESA)和多算法集成模型(EMA),并对模型进行训练和评价模型评价结果表明:EMA模型并非总是优于ESA模型人工神经网络算法构建的ESA模型在节约算力的同时,得最优的预测效果。模型预测结果表明热带地区PCNs的分布范围呈北移趋势,热带地区面积减少,北纬地区面积增加。尽管全球适生区域总面积变化不大,占陆地总面积的16-20%(目前为18%),但这一分布变化仍可能对马铃薯生产产生重大影响。因此,生产者和管理者需要密切关注这一趋势,并采取相应措施来应对潜在的生物安全挑战。本研究不仅为评估PCNs侵入新地区的风险提供了科学依据,还为跟踪其他入侵物种分布变化提供了参考模型。利用机器学习技术预测物种分布变化,可以更好地了解气候变化对物种分布的影响,从而制定更有效的生物安全控制计划,有助于应对未来气候变化带来的挑战。



Abstract  

Potato cyst nematodes (PCNs) are a significant threat to potato production, having caused substantial damage in many countries.  Predicting the future distribution of PCN species is crucial to implementing effective biosecurity strategies, especially given the impact of climate change on pest species invasion and distribution.  Machine learning (ML), specifically ensemble models, has emerged as a powerful tool in predicting species distributions due to its ability to learn and make predictions based on complex data sets.  Thus, this research utilised advanced machine learning techniques to predict the distribution of PCN species under climate change conditions, providing the initial element for invasion risk assessment.  We first used Global Climate Models to generate homogeneous climate predictors to mitigate the variation among predictors.  Then, five machine learning models were employed to build two groups of ensembles, single-algorithm ensembles (ESA) and multi-algorithm ensembles (EMA), and compared their performances.  In this research, the EMA did not always perform better than the ESA, and the ESA of Artificial Neural Network gave the highest performance while being cost-effective.  Prediction results indicated that the distribution range of PCNs would shift northward with a decrease in tropical zones and an increase in northern latitudes.  However, the total area of suitable regions will not change significantly, occupying 16–20% of the total land surface (18% under current conditions).  This research alerts policymakers and practitioners to the risk of PCNs’ incursion into new regions.  Additionally, this ML process offers the capability to track changes in the distribution of various species and provides scientifically grounded evidence for formulating long-term biosecurity plans for their control. 

Keywords:  invasive species distribution       Future climates        Homogeneous climate predictors       single-algorithm ensembles       multi-algorithm ensembles       artificial neural network

  
Received: 24 December 2023   Accepted: 28 February 2024
Fund: 
This research was funded by the National Key R&D Program of China (2021YFD1400200) and the Taishan Scholar Constructive Engineering Foundation of Shandong, China (tstp20221135).

About author:  Yitong He, E-mail: he_yitong@hotmail.com; #Correspondence Dong Chu, E-mail: chinachudong@qau.edu.cn; Simon J. McKirdy, E-mail: s.mckirdy@murdoch.edu.au

Cite this article: 

Yitong He, Guanjin Wang, Yonglin Ren, Shan Gao, Dong Chu, Simon J. Mckirdy. 2024. Machine learning ensemble model prediction of northward shift in potato cyst nematodes (Globodera rostochiensis and G. pallida) distribution under climate change conditions. Journal of Integrative Agriculture, 23(10): 3576-3591.


Adhikari P, Lee Y H, Poudel A, Lee G, Hong S H, Park Y S. 2023. Predicting the impact of climate change on the habitat distribution of Parthenium hysterophorus around the world and in South Korea. Biology12, 84.

Allam Z, Bibri S E, Sharpe S A. 2022. The rising impacts of the COVID-19 pandemic and the Russia–Ukraine war: Energy transition, climate justice, global inequality, and supply chain disruption. Resources11, 99.

Andersen M C, Adams H, Hope B, Powell M. 2004. Risk assessment for invasive species. Risk Analysis24, 787–793.

Araújo M B, New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology & Evolution22, 42–47.

Barbet-Massin M, Jiguet F, Albert C H, Thuiller W. 2012. Selecting pseudo-absences for species distribution models: How, where and how many? Methods in Ecology and Evolution3, 327–338.

Beaumont L J, Hughes L, Pitman A J. 2008. Why is the choice of future climate scenarios for species distribution modelling important? Ecology Letters11, 1135–1146.

Blok V, Pickup J, Davie K, Kettle H, Ewing D, Roberts A, Kuhfuss L, Kleczkowski A, McDougall B. 2020. The Future Threat of PCN in Scotland. Project Final Report. PHC2018/16. Scotland’s Centre of Expertise for Plant Health (PHC).

Breiner F T, Guisan A, Bergamini A, Nobis M P. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution6, 1210–1218.

Brownlee J. 2020. Why use ensemble learning? [2022-6-10]. https://machinelearningmastery.com/why-use-ensemble-learning

Buebos-Esteve D E, Mamasig G D N S, Ringor A M D, Layog H N B, Murillo L C S, Dagamac N H A. 2023. Modeling the potential distribution of two immortality flora in the Philippines: Applying MaxEnt and GARP algorithms under different climate change scenarios. Modeling Earth Systems and Environment9, 2857–2876.

Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G. 2010. Uncertainty in ensemble forecasting of species distribution. Global Change Biology16, 1145–1157.

Burnham K P, Anderson D R. 2002. Model selection and multimodel inference. In: A Practical Information-Theoretic Approach. Springer, New York.

CABI (Commonwealth Agricultural Bureaux International). 2021a. Globodera pallida (white potato cyst nematode). [2021-12-31]. https://www.cabi.org/isc/datasheet/27033

CABI (Commonwealth Agricultural Bureaux International). 2021b. Globodera rostochiensis (yellow potato cyst nematode). [2021-12-31]. https://www.cabi.org/isc/datasheet/27034

Chytrý M, Wild J, Pyšek P, Jarošík V, Dendoncker N, Reginster I, Pino J, Maskell L C, Vilà M, Pergl J, Kühn I, Spangenberg J H, Settele J. 2012. Projecting trends in plant invasions in Europe under different scenarios of future land-use change. Global Ecology and Biogeography21, 75–87.

Cook B I, Mankin J S, Marvel K, Williams A P, Smerdon J E, Anchukaitis K J. 2020. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future8, e2019EF001461.

Dong X, Yu Z, Cao W, Shi Y, Ma Q. 2020. A survey on ensemble learning. Frontiers of Computer Science14, 241–258.

Duan Y X. 2011. Plant Nematology. Sciencep, Beijing. pp. 43. (in Chinese)

Duyck P F, Dortel E, Tixier P, Vinatier F, Loubana P M, Chabrier C, Quénéhervé P. 2012. Niche partitioning based on soil type and climate at the landscape scale in a community of plant-feeding nematodes. Soil Biology and Biochemistry44, 49–55.

EcoCommons. 2022. Maxent. EcoCommons. [2022-11-30]. https://support.ecocommons.org.au/support/solutions/articles/6000254294-maxent

EPPO (European and Mediterranean Plant Protection Organization). 1998. Guidelines on pest risk analysis check-list of information required for pest risk analysis (PRA). In: EPPO Standards. EPPO, Paris.

EPPO (European and Mediterranean Plant Protection Organization). 2020a. Globodera pallida. [2020-6-23]. https://gd.eppo.int/taxon/HETDPA/categorization

EPPO (European and Mediterranean Plant Protection Organization). 2020b. Globodera rostochiensis. [2020-6-30]. https://gd.eppo.int/taxon/HETDRO/categorization

Eyring V, Bony S, Meehl G A, Senior C A, Stevens B, Stouffer R J, Taylor K E. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development9, 1937–1958.

Fan X, Duan Q, Shen C, Wu Y, Xing C. 2020. Global surface air temperatures in CMIP6: Historical performance and future changes. Environmental Research Letters15, 104056.

Finch D M, Butler J L, Runyon J B, Fettig C J, Kilkenny F F, Jose S, Frankel S J, Cushman S A, Cobb R C, Dukes J S. 2021. Effects of climate change on invasive species. In: Poland T M, Patel-Weynand T, Finch D M, Miniat C F, Hayes D C, Lopez V M eds., Invasive Species in Forests and Rangelands of the United States. Springer, Cham, Poland. p. 57.

Franklin J, Miller J A. 2010. Mapping Species Distributions. Cambridge University Press, Cambridge.

Gbif.org. 2021. Occurrence download. The global biodiversity information facility. [2021-10-20]. https://www.gbif.org/occurrence/download/0032093–210914110416597

Guisan A, Petitpierre B, Broennimann O, Daehler C, Kueffer C. 2014. Unifying niche shift studies: Insights from biological invasions. Trends in Ecology & Evolution29, 260–269.

Guisan A, Thuiller W, Zimmermann N E. 2017. Habitat Suitability and Distribution Models with Applications in R. Cambridge University Press, London.

Hamed M M, Nashwan M S, Shahid S. 2022. A novel selection method of CMIP6 GCMs for robust climate projection. International Journal of Climatology42, 4258–4272.

Hao T, Elith J, GuilleraArroita G, LahozMonfort J J. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Diversity and Distributions25, 839–852.

Hao T, Elith J, LahozMonfort J J, GuilleraArroita G. 2020. Testing whether ensemble modelling is advantageous for maximising predictive performance of species distribution models. Ecography43, 549–558.

Harris R M B, Grose M R, Lee G, Bindoff N L, Porfirio L L, Fox-Hughes P. 2014. Climate projections for ecologists. Wiley Interdisciplinary ReviewsClimate Change5, 621–637.

He Y, Wang G, Ren Y, Zheng D, Gao S, McKirdy S J, Chu D. 2023. Integrated prediction of potato cyst nematodes’ (Globodera rostochiensis and Globodera pallida) potential distribution and risk regions: Using China as a case study. [2023-01-13]https://dx.doi.org/10.21203/rs.3.rs-2466031/v1 (preprint)

He Y, Wang R, Zhao H, Ren Y, Agarwal M, Zheng D, Gao S, McKirdy S J, Chu D. 2022. Predicting potential global distribution and risk regions for potato cyst nematodes (Globodera rostochiensis and Globodera pallida). Scientific Reports12, 21843.

Hijmans R J. 2012. Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology93, 679–688.

Hodda M, Cook D C. 2009. Economic impact from unrestricted spread of potato cyst nematodes in Australia. Phytopathology99, 1387–1393.

Hutchinson G E. 1991. Population studies: Animal ecology and demography. Bulletin of Mathematical Biology53, 193–213.

IPPC (International Plant Protection Convention) Secretariat. 2019. Framework for pest risk analysis. Food and Agriculture Organization of the United Nations, Rome.

Jones L M, Koehler A K, Trnka M, Balek J, Challinor A J, Atkinson H J, Urwin P E. 2017. Climate change is predicted to alter the current pest status of Globodera pallida and Grostochiensis in the United Kingdom. Global Change Biology23, 4497–4507.

Jordan M I, Mitchell T M. 2015. Machine learning: Trends, perspectives, and prospects. Science349, 255–260.

Kaczmarek A, MacKenzie K, Kettle H, Blok V C. 2014. Influence of soil temperature on Globodera rostochiensis and Globodera pallidaPhytopathologia Mediterranea53, 396–405.

Kaky E, Nolan V, Alatawi A, Gilbert F. 2020. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecological Informatics60, 101150.

Kim E, Seo Y, Kim Y S, Park Y, Kim Y H. 2017. Effects of soil textures on infectivity of root-knot nematodes on carrot. Plant Pathology Journal33, 66–74.

Kindt R. 2018. Ensemble species distribution modelling with transformed suitability values. Environmental Modelling & Software100, 136–145.

Li X, Wang Y. 2013. Applying various algorithms for species distribution modelling. Integrative Zoology8, 124–135.

Liu C, White M, Newell G. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography40, 778–789.

Merow C, Smith M J, Silander Jr J A. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography36, 1058–1069.

Miller J. 2010. Species distribution modeling. Geography Compass4, 490–509.

Mohammed K S, Usman M, Ahmad P, Bulgamaa U. 2022. Do all renewable energy stocks react to the war in Ukraine? Russo-Ukrainian conflict perspective. Environmental Science and Pollution Research, 30, 3678236793.

Nakicenovic N, Alcamo J, Davis G, Vries B D, Fenhann J, Gaffin S, Gregory K, Griibler A, Jung T Y, Kram T, Rovere E L L, Michaelis L, Mori S, Morita T, Pepper W, Pitcher H, Price L, Riahi K, Roehrl A, Rogner H H, et al. 2000. Emissions scenarios. In: Nakicenovic N, Swart R, eds., The Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, England. p. 59.

O’Neill B C, Tebaldi C, Van Vuuren D P, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J F, Lowe J, Meehl G A, Moss R, Riahi K, Sanderson B M. 2016. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geoscientific Model Development9, 3461–3482.

Polikar R. 2012. Ensemble learning. In: Zhang C, Ma Y, eds., Ensemble Machine Learning. Springer, Germany. pp. 1–34.

Pompeu J, de Oliveira Portella R. 2023. Genetic viability and habitat suitability of the Critically Endangered southern muriqui (Brachyteles arachnoides) in the Atlantic Forest’s fragmented landscapes under land use and climate change scenarios. Climate Change Ecology5100065.

Price J A, Coyne D, Blok V C, Jones J T. 2021. Potato cyst nematodes Globodera rostochiensis and GpallidaMolecular Plant Pathology22, 495–507.

Rana S K, Rana H K, Luo D, Sun H. 2021. Estimating climate-induced ‘nowhere to go’ range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models. Ecological Indicators121, 107127.

Riahi K, Van Vuuren D P, Kriegler E, Edmonds J, O’Neill B C, Fujimori S, Bauer N, Calvin K, Dellink R, Fricko O, Lutz W, Popp A, Cuaresma J C, Kc S, Leimbach M, Jiang L, Kram T, Rao S, Emmerling J, Ebi K, et al. 2017. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Global Environmental Change42, 153–168.

Robinson T B, Martin N, Loureiro T G, Matikinca P, Robertson M P. 2020. Double trouble: the implications of climate change for biological invasions. NeoBiota62, 463–487.

Ruthes A C, Dahlin P. 2022. The impact of management strategies on the development and status of potato cyst nematode populations in Switzerland: An overview from 1958 to present. Plant Disease106, 1096–1104.

Shabani F, Kumar L, Ahmadi M. 2018. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Global Journal of Human Social Science18, 6–18.

Sillero N, Campos J C, Arenas-Castro S, Barbosa A M. 2023. A curated list of R packages for ecological niche modelling. Ecological Modelling476, 110242.

da Silva J C P, de Medeiros F H V, Campos V P. 2018. Building soil suppressiveness against plant-parasitic nematodes. Biocontrol Science and Technology28, 423–445.

Skelsey P, Kettle H, Mackenzie K, Blok V. 2018. Potential impacts of climate change on the threat of potato cyst nematode species in Great Britain. Plant Pathology67, 909–919.

Song Y H, Nashwan M S, Chung E-S, Shahid S. 2021. Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea. Atmospheric Research247, 105261.

Srivastava V, Lafond V, Griess V C. 2019. Species distribution models (SDM): Applications, benefits and challenges in invasive species management. CAB Reviews14, 1–13.

Stanton J C, Pearson R G, Horning N, Ersts P, Reşit Akçakaya H. 2012. Combining static and dynamic variables in species distribution models under climate change. Methods in Ecology and Evolution3, 349–357.

Stewart S B, Fedrigo M, Kasel S, Roxburgh S H, Choden K, Tenzin K, Allen K, Nitschke C R. 2022. Predicting plant species distributions using climatebased model ensembles with corresponding measures of congruence and uncertainty. Diversity and Distributions28, 1105–1122.

Sukhanova A A, Boyandin A N, Ertiletskaya N L. 2022. Potato cyst nematode management strategies: Current situation and promising approaches. ACS Agricultural Science & Technology2, 415–425.

Thuiller W, Georges D, Gueguen M, Engler R, Breiner F. 2021. Biomod2: Ensemble platform for species distribution modeling. CRAN. [2022-01-20]https://CRAN.R-project.org/package=biomod2

Thuiller W, Lafourcade B, Engler R, Araújo M B. 2009. BIOMOD - a platform for ensemble forecasting of species distributions. Ecography32, 369–373.

TouzéPeiffer L, Barberousse A, Le Treut H. 2020. The coupled model intercomparison project: History, uses, and structural effects on climate research. Wiley Interdisciplinary Reviews: Climate Change11, e648.

Wallingford P D, Morelli T L, Allen J M, Beaury E M, Blumenthal D M, Bradley B A, Dukes J S, Early R, Fusco E J, Goldberg D E, Ibáñez I, Laginhas B B, Vilà M, Sorte C J B. 2020. Adjusting the lens of invasion biology to focus on the impacts of climate-driven range shifts. Nature Climate Change10, 398–405.

Witze A. 2022. Russia’s war in Ukraine forces Arctic climate projects to pivot. Nature607, 432.

Yang Y. 2017. Chapter 4: Ensemble learning. In: Yang Y, ed., Temporal Data Mining Via Unsupervised Ensemble Learning. Elsevier, the Netherlands. pp. 35–56.


No related articles found!
No Suggested Reading articles found!