Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (1): 209-219    DOI: 10.1016/j.jia.2024.05.027
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Twinstar is a chitin synthase interacting protein with an essential role in insect cuticle biosynthesis

Xu Zou1, Jiqiang Chen1, Yanwei Duan2, Weixing Zhu2, Qing Yang1, 2#

1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2 Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China

 Highlights 
Twinstar has been shown to directly interact with chitin synthase through various assays.
Twinstar is essential for chitin synthesis in insect cuticles.
Twinstar is highly conserved across diverse insect species, suggesting it may play a conserved role in chitin synthesis.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  几丁质是一种丰富的天然生物聚合物,是昆虫外骨骼的主要结构组分,对于昆虫的生长和发育至关重要。几丁质合成酶(Chitin synthase,CHS)是一种膜整合的糖基转移酶,被认为是参与几丁质生物合成过程的关键酶。然而,在几丁质生物合成过程中,一些额外的蛋白在促进几丁质合成酶发挥功能方面的具体作用仍然没有被完全阐明。在本研究中,利用分裂泛素膜酵母双杂交(Split-ubiquitin membrane yeast two-hybridMYTH)和Pull-down实验,证明了黑腹果蝇(Drosophila melanogasterTwinstarTsr)与几丁质合成酶(Krotzkopf verkehrtKkv)在体外存在物理相互作用。Tsr 是一种小分子蛋白,属于肌动蛋白解聚因子ADF/Cofilin家族。利用RNA干扰(RNA interferenceRNAi)技术在果蝇全身、表皮、气管和翅中对Tsr基因进行干扰,结果显示,降低果蝇全身、表皮和气管中的Tsr基因均会导致果蝇幼虫死亡;而降低果蝇翅中Tsr基因的表达导致翅褶皱表型。进一步研究表明,异常翅的第一纵脉几丁质含量降低,且几丁质片层结构缺失。为了验证Tsr在其他昆虫目中的功能保守性,对鳞翅目害虫亚洲玉米螟(Ostrinia furnacalis)和鞘翅目害虫赤拟谷盗Tribolium castaneum)进行了研究。分别对亚洲玉米螟和赤拟谷盗中果蝇Tsr的同源基因OfTsrTcTsr进行干扰,结果表明,降低亚洲玉米螟OfTsr的表达导致幼虫表皮合成受阻和化蛹异常;降低赤拟谷盗TcTsr的表达引起幼虫致死表型。本研究结果不仅增加了我们对昆虫表皮几丁质生物合成机制的认识,还为农业害虫防治提供了新的潜在靶点。

Abstract  
Chitin is an abundant natural biopolymer that plays a crucial role in insect growth and development as a fundamental structural component of the exoskeleton.  The membrane-integral β-glycosyltransferase, chitin synthase, has been identified as the central component in chitin biosynthesis.  However, the precise roles of other proteins in facilitating chitin synthase in chitin biosynthesis remain unclear.  In this study, we employed split-ubiquitin membrane yeast two-hybrid (MYTH) and pull-down assays to demonstrate the physical interaction between Twinstar (Tsr), a small molecular protein in the actin-depolymerizing factor ADF/Cofilin protein family, and chitin synthase Krotzkopf verkehrt (Kkv) in Drosophila melanogaster in vitro.  The RNA interference (RNAi)-mediated global knockdown of Tsr in Dmelanogaster resulted in larval lethality.  Furthermore, targeted suppression of Tsr in the tracheal and epidermal tissues also led to larval mortality, while knocking down Tsr in the wing tissues led to wrinkled wings.  Additionally, silencing Tsr not only reduced the chitin content in the first longitudinal vein of the wings but also led to the absence of the chitin lamellar structure.  To validate the functional conservation of Tsr in other insect orders, the two agricultural pests Ostrinia furnacalis and Tribolium castaneum, representing lepidoptera and coleoptera insects, respectively, were investigated.  Knockdown experiments targeting the Drosophila Tsr orthologues OfTsr in Ofurnacalis and TcTsr in Tcastaneum produced abnormal larvae during molting or pupation in Ofurnacalis and lethality in Tcastaneum.  Our findings not only improve our knowledge of the chitin biosynthesis machinery in insect cuticles but also provide new potential targets for the control of major agricultural pests.


Keywords:  chitin        chitin synthase        Twinstar        insect cuticle        pest control  
Received: 25 January 2024   Accepted: 17 April 2024
Fund: 
This work was supported by the National Natural Science Foundation of China (32161133010), the National Key Research and Development Program of China (2022YFD1700200), the Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-CSCB-202302), the Shenzhen Science and Technology Program, China (KQTD20180411143628272), and the Special Funds for Science Technology Innovation and Industrial Development of Shenzhen Dapeng New District, China (PT202101-02).
About author:  Xu Zou, E-mail: xuxuzou@163.com; #Correspondence Qing Yang, E-mail: qingyang@caas.cn

Cite this article: 

Xu Zou, Jiqiang Chen, Yanwei Duan, Weixing Zhu, Qing Yang. 2025. Twinstar is a chitin synthase interacting protein with an essential role in insect cuticle biosynthesis. Journal of Integrative Agriculture, 24(1): 209-219.

Arakane Y, Dixit R, Begum K, Park Y, Specht C A, Merzendorfer H, Kramer K J, Muthukrishnan S, Beeman R W. 2009. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneumInsect Biochemistry and Molecular Biology39, 355–365.

Blair A, Tomlinson A, Pham H, Gunsalus K C, Goldberg M L, Laski F A. 2006. Twinstar, the Drosophila homolog of Cofilin/ADF, is required for planar cell polarity patterning. Development133, 1789–1797.

Von Blume J, Alleaume A M, Cantero-Recasens G, Curwin A, Carreras-Sureda A, Zimmermann T, Van galen J, Wakana Y, Valverde Miguel A, Malhotra V. 2011. ADF/Cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Developmental Cell20, 652–662.

Von Blume J, Duran J M, Forlanelli E, Alleaume A M, Egorov M, Polishchuk R, Molina H, Malhotra V. 2009. Actin remodeling by ADF/Cofilin is required for cargo sorting at the trans-Golgi network. Journal of Cell Biology187, 1055–1069.

Broehan G, Zimoch L, Wessels A, Ertas B, Merzendorfer H. 2007. A chymotrypsin-like serine protease interacts with the chitin synthase from the midgut of the tobacco hornworm. Journal of Experimental Biology210, 3636–3643.

Chen D D, Wang Z B, Wang L X, Zhao P, Yun C H, Bai L. 2023. Structure, catalysis, chitin transport, and selective inhibition of chitin synthase. Nature Communications14, 4776.

Chen J, Godt D, Gunsalus K, Kiss I, Goldberg M, Laski F A. 2001. Cofilin/ADF is required for cell motility during Drosophila ovary development and oogenesis. Nature Cell Biology3, 204–209.

Chen J Q, Zou X, Zhu W X, Duan Y W, Merzendorfer H, Zhao Z W, Yang Q. 2022. Fatty acid binding protein is required for chitin biosynthesis in the wing of Drosophila melanogasterInsect Biochemistry and Molecular Biology149, 103845.

Chen W, Cao P, Liu Y S, Yu A L, Wang D, Chen L, Sundarraj R, Yuchi Z G, Gong Y, Merzendorfer H, Yang Q. 2022. Structural basis for directional chitin biosynthesis. Nature610, 402–408.

Curwin A J, Von Blume J, Malhotra V. 2012. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Molecular Biology of the Cell23, 2327–2338.

Duan Y W, Zhu W X, Zhao X M, Merzendorfer H, Chen J Q, Zou X, Yang Q. 2022. Choline transporter-like protein 2 interacts with chitin synthase 1 and is involved in insect cuticle development. Insect Biochemistry and Molecular Biology141, 103718.

Guerriero G, Avino M, Zhou Q, Fugelstad J, Clergeot P H, Bulone V. 2010. Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs. PLoS Pathogens6, e1001070.

Gunsalus K C, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg M L. 1995. Mutations in Twinstar, a Drosophila gene encoding a Cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. Journal of Cell Biology131, 1243–1259.

Jaworski E, Wang L, Marco G. 1963. Synthesis of chitin in cell-free extracts of Prodenia eridaniaNature198, 790–790.

Kanellos G, Frame M C. 2016. Cellular functions of the ADF/Cofilin family at a glance. Journal of Cell Science129, 3211–3218.

Ko C, Kim Y G, Le T P, Choi K W. 2016. Twinstar/Cofilin is required for regulation of epithelial integrity and tissue growth in DrosophilaOncogene35, 5144–5154.

Lee C W, Han J, Bamburg J R, Han L, Lynn R, Zheng J Q. 2009. Regulation of acetylcholine receptor clustering by ADF/Cofilin-directed vesicular trafficking. Nature Neuroscience12, 848–856.

Liu L, Xia Y Q, Li Y C, Zhou Y, Su X F, Yan X J, Wang Y, Liu W D, Cheng H M, Wang Y C, Yang Q. 2023. Inhibition of chitin deacetylases to attenuate plant fungal diseases. Nature Communications14, 3857.

Ma Z Z, Zhou H, Wei Y L, Yan S, Shen J. 2020. A novel plasmid-Escherichia coli system produces large batch dsRNAs for insect gene silencing. Pest Management Science76, 2505–2512.

Merzendorfer H. 2011. The cellular basis of chitin synthesis in fungi and insects: Common principles and differences. European Journal of Cell Biology90, 759–769.

Moussian B. 2019. Chitin: Structure, chemistry and biology. Advances in Experimental Medicine and Biology1142, 5–18.

Muthukrishnan S, Merzendorfer H, Arakane Y, Kramer K J. 2012. Chitin metabolism in insects. Insect Molecular Biology and Biochemistry2012, 193–235.

Okreglak V, Drubin D G. 2007. Cofilin recruitment and function during actin-mediated endocytosis dictated by actin nucleotide state. The Journal of Cell Biology178, 1251–1264.

Pham H, Yu H, Laski F A. 2008. Cofilin/ADF is required for retinal elongation and morphogenesis of the Drosophila rhabdomere. Developmental Biology318, 82–91.

Qu M B, Yang Q. 2011. A novel alternative splicing site of class A chitin synthase from the insect Ostrinia furnacalis gene organization, expression pattern and physiological significance. Insect Biochemistry and Molecular Biology41, 923–931.

Ren Z N, Chhetri A, Guan Z Q, Suo Y, Yokoyama K, Lee S Y. 2022. Structural basis for inhibition and regulation of a chitin synthase from Candida albicansNature Structural & Molecular Biology29, 653–664.

Renshaw H, Vargas-Muñiz J M, Richards A D, Asfaw Y G, Juvvadi P R, Steinbach W J. 2016. Distinct roles of myosins in Aspergillus fumigatus hyphal growth and pathogenesis. Infection and Immunity84, 1556–1564.

Ruiz-Herrera J, Ortiz-Castellanos L. 2010. Analysis of the phylogenetic relationships and evolution of the cell walls from yeasts and fungi. FEMS Yeast Research10, 225–243.

Shukla V K, Maheshwari D, Jain A, Tripathi S, Kumar D, Arora A. 2018. Structure, dynamics, and biochemical characterization of ADF/Cofilin Twinstar from Drosophila melanogasterBiochimica et Biophysica Acta–Proteins and Proteomics1866, 885–898.

Skouloudaki K, Christodoulou I, Khalili D, Tsarouhas V, Samakovlis C, Tomancak P, Knust E, Papadopoulos D K. 2019. Yorkie controls tube length and apical barrier integrity during airway development. Journal of Cell Biology218, 2762–2781.

Sudarsanam S, Yaniv S, Meltzer H, Schuldiner O. 2020. Cofilin regulates axon growth and branching of Drosophila γ-neurons. Journal of Cell Science133, jcs232595.

Taheri-Talesh N, Xiong Y, Oakley B R. 2012. The functions of myosin II and myosin V homologs in tip growth and septation in Aspergillus nidulansPLoS ONE7, e31218.

Wu J, Wang H, Guo X, Chen J. 2016. Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development. Molecular Biology of the Cell27, 2554–2564.

Zhu K Y, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. 2016. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology61, 177–196.

Zhu W X, Duan Y W, Chen J Q, Merzendorfer H, Zou X, Yang Q. 2022. SERCA interacts with chitin synthase and participates in cuticular chitin biogenesis in DrosophilaInsect Biochemistry and Molecular Biology145, 103783.

[1] XU Hao-ran, HE Lin, XIAO Wei, SHEN Guang-mao. Identification of the key chitinase genes in Tetranychus cinnabarinus (Boisduval) based on the expression and sequence characteristic analysis[J]. >Journal of Integrative Agriculture, 2017, 16(04): 892-899.
[2] YU Ya, ZHANG Lei, LIAN Wei-ran, XU Feng-feng, LI Shuang-tao, XIANG Juan, ZHANG Guo-zhen, HU Zan-min, ZHAO Bing, REN Shu-xin, GUO Yang-dong. Enhanced resistance to Botrytis cinerea and Rhizoctonia solani in transgenic broccoli with a Trichoderma viride endochitinase gene[J]. >Journal of Integrative Agriculture, 2015, 14(3): 430-437.
No Suggested Reading articles found!