Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (9): 3234-3237    DOI: 10.1016/j.jia.2024.05.006
Letter Advanced Online Publication | Current Issue | Archive | Adv Search |
Negative feedback regulation of PROG1 in rice

Jinlin Bao1, 2*, Jing Huang1, 2*, Xiaoqing Yang1, 2, Xizhi Li1, 2, Shengjie Cheng1, 2, Wei Huang1, 3, Jun Wang1, 4, Jian Jin1, 2#

1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530004, China
2 College of Life Science and Technology, Guangxi University, Nanning 530004, China
3 College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
4 National Key Laboratory of Plant Molecular Genetics/Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS)/Institute of Plant Physiology and Ecology, CAS, Shanghai 200032, China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
PROSTRATE GROWTH1 (PROG1)是一个与水稻驯化相关的重要转录因子,在水稻株型和穗型的调控中发挥着重要作用。PROG1过度积累会使植株结构松散,无效分蘖增加,穗减小,穗粒数降低,最终导致产量下降。相反,PROG1积累不足导致昼夜节律核心调节因子OsGI下调进而从多方面影响水稻生理和发育。因此,维持水稻PROG1的稳态至关重要。在本研究中我们揭示了PROG1的负反馈调节机制,PROG1与其自身的启动子直接结合,并负调节其自身的表达,进而达到维持自身稳态的目的此外,我们的研究结果表明,PROG1的反馈调节机制独立于其互作蛋白LA1运作。这些发现为了解水稻驯化相关转录因子PROG1的调控机制提供了有价值的见解。


Received: 23 November 2023   Accepted: 07 April 2024
Fund: 
This work was financed by the National Natural Science Foundation of China (32060174, 32360085 and 32160079), the Natural Science Foundation of Guangxi Province, China (2020GXNSFAA297236 and 2020GXNSFAA297211), the Fellowship of China Postdoctoral Science Foundation, China (2021M693175), the State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, China (SKLCUSA-a202007) and the Innovation Project of Guangxi Graduate Education, China (YCBZ2023037).
About author:  #Correspondence Jian Jin, Tel: +86-771-3236663, E-mail: jinjian@gxu.edu.cn * These authors contributed equally to this study.

Cite this article: 

Jinlin Bao, Jing Huang, Xiaoqing Yang, Xizhi Li, Shengjie Cheng, Wei Huang, Jun Wang, Jian Jin. 2024. Negative feedback regulation of PROG1 in rice. Journal of Integrative Agriculture, 23(9): 3234-3237.

Alon U. 2007. Network motifs: theory and experimental approaches. Nature Reviews Genetics8, 450–461.

Brandman O, Meyer T. 2008. Feedback loops shape cellular signals in space and time. Science322, 390–395.

Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E. 2003. Polyphyletic origin of cultivated rice: Based on the interspersion pattern of SINEs. Molecular Biology and Evolution20, 67–75.

Ferrell Jr J E. 2002. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Current Opinion in Cell Biology14, 140–148.

Fuller D Q, Sato Y I, Castillo C, Qin L, Weisskopf A R, Kingwell-Banham E J, Song J, Ahn S M, Van Etten J. 2010. Consilience of genetics and archaeobotany in the entangled history of rice. Archaeological and Anthropological Sciences2, 115–131.

Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K. 2003. Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature422, 719–722.

Hu Y, Li S, Fan X, Song S, Zhou X, Weng X, Xiao J, Li X, Xiong L, You A, Xing Y. 2020. OsHOX1 and OsHOX28 redundantly shape rice tiller angle by reducing HSFA2D expression and auxin content. Plant Physiology184, 1424–1437.

Izawa T, Mihara M, Suzuki Y, Gupta M, Itoh H, Nagano A J, Motoyama R, Sawada Y, Yano M, Hirai M Y, Makino A, Nagamura Y. 2011. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. The Plant Cell23, 1741–1755.

Jin J, Huang W, Gao J P, Yang J, Shi M, Zhu M Z, Luo D, Lin H X. 2008. Genetic control of rice plant architecture under domestication. Nature Genetics40, 1365–1369.

Khush G S. 1997. Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology35, 25–34.

Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M. 2002. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant and Cell Physiology43, 1096–1105.

Li S, Ying Y, Secco D, Wang C, Narsai R, Whelan J, Shou H. 2017. Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in Oryza sativaPlant, Cell & Environment40, 1487–1499.

Li S, Yue W, Wang M, Qiu W, Zhou L, Shou H. 2016. Mutation of OsGIGANTEA leads to enhanced tolerance to polyethylene glycol-generated osmotic stress in rice. Frontiers in Plant Science7, 465.

Mitrophanov A Y, Groisman E A. 2008. Positive feedback in cellular control systems. BioEssays30, 542–555.

Mitrophanov A Y, Hadley T J, Groisman E A. 2010. Positive autoregulation shapes response timing and intensity in two-component signal transduction systems. Journal of Molecular Biology401, 671–680.

Miyashiro T, Goulian M. 2008. High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proceedings of the National Academy of Sciences ot the United States of America105, 17457–17462.

Ohgishi M, Oka A, Morelli G, Ruberti I, Aoyama T. 2001. Negative autoregulation of the Arabidopsis homeobox gene ATHB-2. The Plant Journal25, 389–398.

Tan L, Li X, Liu F, Sun X, Li C, Zhu Z, Fu Y, Cai H, Wang X, Xie D, Sun C. 2008. Control of a key transition from prostrate to erect growth in rice domestication. Nature Genetics40, 1360–1364.

Thomas R, D’ari R.1990. Biological Feedback. CRC Press, Boca Raton, FL.

Wang J, Huang J, Bao J, Li X, Zhu L, Jin J. 2023. Rice domestication-associated transcription factor PROSTRATE GROWTH1 controls plant and panicle architecture by regulating the expression of LAZY1 and OsGIGANTEA, respectively. Molecular Plant16, 1413–1426.

Wang W, Gui S, Wang Y. 2023. Uncover the mystery of pleiotropic effects of PROG1 during rice domestication. Molecular Plant16, 1722–1723.

Wang X, He Y, Wei H, Wang L. 2021. A clock regulatory module is required for salt tolerance and control of heading date in rice. Plant, Cell & Environment44, 3283–3301.

Wei C L, Cao B S, Hua S, Li B G. 2022. Quantitative analysis of the effect of the PAY1 gene on rice canopy structure during different reproductive stages. Journal of Integrative Agriculture21, 3488–3500.

Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant Cell12, 2473–2484.

Zhang H, Li X, Sang D, Huang L, Song Y, Du M, Cao J, Wang W. 2023. PROG1 acts upstream of LAZY1 to regulate rice tiller angle as a repressor. The Crop Journal11, 386–393.

No related articles found!
No Suggested Reading articles found!