Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1310-1326    DOI: 10.1016/j.jia.2024.04.014
Section 3: Diet components and feed additives Advanced Online Publication | Current Issue | Archive | Adv Search |
16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin

Haokai Ma1*, Dengke Liu2*, Rui Liu1, Yang Li1#, Modinat Tolani Lambo1, Baisheng Dai3#, Weizheng Shen3, Yongli Qu4, 5, Yonggen Zhang1

1 College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China

2 Hebei Shounong Modern Agricultural Technology Co., Ltd., Baoding 073000, China

3 College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China

4 College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China

5 Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China

 Highlights 
● Cordycepin significantly reduces methane production in in vitro rumen fermentation.
● The in vitro rumen fermentation type gradually shifts from acetate formation to propionate formation with the addition of cordycepin.
● Cordycepin alters the rumen microbial composition, metabolite profiles, and KEGG pathways.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  
作为农业生产中贡献较大的甲烷生产者,反刍动物需要一种合适的甲烷抑制剂来降低其甲烷的排放,去尽可能地降低甲烷对气候的影响。虫草素在此前研究中已被证明能够提高免疫和调节菌群,另外含有虫草素的蛹虫草被证明可以降低体外甲烷排放,但虫草素能否降低体外甲烷产量尚不清楚。因此本试验选用虫草素来探究其对瘤胃发酵参数、产气量、瘤胃微生物组和瘤胃代谢产物的影响。我们选择0.00, 0.08, 0.16, 0.32和0.64 g L-1五种浓度的虫草素加入到含TMR的发酵瓶内进行体外产气试验,测量了各瓶内发酵液瘤胃发酵参数以及各瓶的产气量,并选用0.00和0.64 g L-1浓度组进行16s rRNA测序及非靶向代谢组学分析。结果表明,虫草素的添加可以增加pH、氨态氮、总挥发酸、丙酸盐、异戊酸盐和戊酸盐的浓度,降低丁酸盐浓度、总产气量、甲烷产量、二氧化碳产量、氢气产量、甲烷浓度和二氧化碳浓度,并且和虫草素浓度呈线性关系,另外氢气浓度和虫草素浓度呈二次关系。同时,Succiniclasticum、Prevotella、Rikenellaceae_RC9_gut_group、NK4A214_group、Christensenellaceae_R_7_group、unclassified_F082Veillonellaceae_UCG_001、Dasytricha、Ophryoscolex、Isotricha、unclassified_Eukaryota、MethanobrevibacterPiromyces的相对丰度在添加最大剂量(0.64 g L-1)的虫草素后显著降低,而Succinivibrio、unclassified_Succinivibrionaceae、Prevotellaceae_UCG_001、unclassified_Lachnospiraceae、Lachnospira、Succinivibrionaceae_UCG_002、Pseudobutyrivibrio、Entodinium、Polyplastron、unclassified_Methanomethylophilaceae、MethanosphaeraCandidatus_Methanomethylophilus的相对丰度显著升高。虫草素的添加还影响了biosynthesis of unsaturated fatty acids和purine metabolism等代谢通路,以及arachidonic acid、adenine和2′-deoxyguanosine等代谢产物。基于此,我们认为虫草素是一种效果较好的甲烷排放抑制剂,其通过影响瘤胃微生物区系改变了瘤胃代谢产物和发酵参数,从而调节了瘤胃甲烷产量。本试验能够为开发含有虫草素的虫草类副产物或添加剂作为反刍动物的甲烷抑制剂的“减碳”策略提供参考。


Abstract  
As a major contributor to methane production in agriculture, there is a need for a suitable methane inhibitor to reduce ruminant methane emissions and minimize the impact on the climate.  This work aimed to explore the influence of cordycepin on rumen fermentation, gas production, microbiome and their metabolites.  A total of 0.00, 0.08, 0.16, 0.32, and 0.64 g L–1 cordycepin were added into fermentation bottles containing 2 g total mixed ration for in vitro ruminal fermentation, and then the gas produced and fermentation parameters were measured for each bottle.  Samples from the 0 and 0.64 g L–1 cordycepin addition were selected for 16S rRNA gene sequencing and metabolome analysis.  The result of this experiment indicated that the addition of cordycepin could linearly increase the concentration of total volatile fatty acid, ammonia nitrogen, the proportion of propionate, valerate, and isovalerate, and linearly reduce ruminal pH and methane, carbon dioxide, hydrogen and total gas production, as well as the methane proportion, carbon dioxide proportion and proportion of butyrate.  In addition, there was a quadratic relationship between hydrogen and cordycepin addition.  At the same time, the relative abundance of Succiniclasticum, Prevotella, Rikenellaceae_RC9_gut_group, NK4A214_group, Christensenellaceae_R_7_group, unclassified_F082, Veillonellaceae_UCG_001, Dasytricha, Ophryoscolex, Isotricha, unclassified_Eukaryota, Methanobrevibacter, and Piromyces decreased significantly after adding the maximum dose of cordycepin.  In contrast, the relative abundance of Succinivibrio, unclassified_Succinivibrionaceae, Prevotellaceae_UCG_001, unclassified_Lachnospiraceae, Lachnospira, Succinivibrionaceae_UCG_002, Pseudobutyrivibrio, Entodinium, Polyplastron, unclassified_Methanomethylophilaceae, Methanosphaera, and Candidatus_Methanomethylophilus increased significantly.  Metabolic pathways such as biosynthesis of unsaturated fatty acids and purine metabolism and metabolites such as arachidonic acid, adenine, and 2´-deoxyguanosine were also affected by the addition of cordycepin.  Based on this, we conclude that cordycepin is an effective methane emission inhibitor that can change the rumen metabolites and fermentation parameters by influencing the rumen microbiome, thus regulating rumen methane production.  This experiment may provide a potential theoretical reference for developing Cordyceps byproduct or additives containing cordycepin as methane inhibitors.


Keywords:  cordycepin        in vitro rumen fermentation        rumen microbiome        metabolome        methane production  
Received: 10 May 2023   Accepted: 19 March 2024
Fund: 
This study was financially supported by the National Key Research and Development Program of China (2023YFD2000701), the Natural Science Foundation of Heilongjiang Province, China (YQ2023C011), the Key Research and Development Program of Heilongjiang Province, China (Grant no. 2022ZX01A24) and the Key Laboratory of Low-carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs of China (LCGANE14).

About author:  Haokai Ma, E-mail: m907073443@outlook.com; Dengke Liu, E-mail: 13910356698@163.com; #Correspondence Yang Li, Tel: +86-451-55190840, E-mail: liyang1405053@neau.edu.cn; Baisheng Dai, E-mail: bsdai@neau.edu.cn * These authors contributed equally to this study.

Cite this article: 

Haokai Ma, Dengke Liu, Rui Liu, Yang Li, Modinat Tolani Lambo, Baisheng Dai, Weizheng Shen, Yongli Qu, Yonggen Zhang. 2025. 16S amplicon sequencing and untargeted metabolomics reveal changes in rumen microorganisms and metabolic pathways involved in the reduction of methane by cordycepin. Journal of Integrative Agriculture, 24(4): 1310-1326.

Aguilar-Marin S B, Betancur-Murillo C L, Isaza G A, Mesa H, Jovel J. 2020. Lower methane emissions were associated with higher abundance of ruminal Prevotella in a cohort of Colombian buffalos. BMC Microbiology20, 1–13.

Ahn Y J, Park S J, Lee S G, Shin S C, Choi D H. 2000. Cordycepin: Selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry48, 2744–2748.

Amanzougarene Z, Fondevila M. 2020. Fitting of the in vitro gas production technique to the study of high concentrate diets. Animals10, 1935.

Amaretti A, Gozzoli C, Simone M, Raimondi S, Righini L, Pérez-Brocal V, García-López R, Moya A, Rossi M. 2019. Profiling of protein degraders in cultures of human gut microbiota. Frontiers in Microbiology10, 2614.

An Y, Li Y, Wang X, Chen Z, Xu H, Wu L, Li S, Wang C, Luan W, Wang X. 2018. Cordycepin reduces weight through regulating gut microbiota in high-fat diet-induced obese rats. Lipids in Health and Disease17, 1–10.

Baker S. 1999. Rumen methanogens, and inhibition of methanogenesis. Australian Journal of Agricultural Research50, 1293–1298.

Barbosa A L, Voltolini T V, Menezes D R, De Moraes S A, Nascimento J C S, De Souza Rodrigues R T. 2018. Intake, digestibility, growth performance, and enteric methane emission of Brazilian semiarid non-descript breed goats fed diets with different forage to concentrate ratios. Tropical Animal Health and Production50, 283–289.

Broderick G A, Kang J H. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. Journal of Dairy Science63, 64–75.

Cheng Y, Shi Q, Sun R, Liang D, Li Y, Li Y, Jin W, Zhu W. 2018. The biotechnological potential of anaerobic fungi on fiber degradation and methane production. World Journal of Microbiology and Biotechnology34, 155.

Cottle D J, Nolan J V, Wiedemann S G. 2011. Ruminant enteric methane mitigation: A review. Animal Production Science51, 491–514.

Cunningham K, Manson W, Spring F, Hutchinson S. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature166, 949.

Dini Y, Gere J I, Cajarville C, Ciganda V S. 2018. Using highly nutritious pastures to mitigate enteric methane emissions from cattle grazing systems in south America. Animal Production Science58, 2329–2334.

Elghandour M M Y, Kholif A E, Salem A Z M, Olafadehan O A, Kholif A M. 2016. Sustainable anaerobic rumen methane and carbon dioxide productions from prickly pear cactus flour by organic acid salts addition. Journal of Cleaner Production139, 1362–1369.

Ellis J E, Mcintyre P S, Saleh M, Williams A G, Lloyd D. 1991. Influence of CO2 and low concentrations of O2 on fermentative metabolism of the ruminal ciliate Polyplastron multivesiculatumApplied and Environmental Microbiology57, 1400–1407.

Fan Q, Wanapat M, Hou F. 2021. Rumen bacteria influence milk protein yield of yak grazing on the Qinghai-Tibet plateau. Animal Bioscience34, 1466–1478.

Feng Z D, Zhong Y F, He G L, Sun H, Chen Y J, Zhou W H, Lin S M. 2022. Yeast culture improved the growth performance, liver function, intestinal barrier and microbiota of juvenile largemouth bass (Micropterus salmoides) fed high-starch diet. Fish & Shellfish Immunology120, 706–715.

Garcia J L, Patel B K C, Ollivier B. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe6, 205–226.

Goodrich R, Garrett J, Gast D, Kirick M, Larson D, Meiske J. 1984. Influence of monensin on the performance of cattle. Journal of Animal Science58, 1484–1498.

Hatew B, Cone J W, Pellikaan W F, Podesta S C, Bannink A, Hendriks W H, Dijkstra J. 2015. Relationship between in vitro and in vivo methane production measured simultaneously with different dietary starch sources and starch levels in dairy cattle. Animal Feed Science and Technology202, 20–31.

Hossein-Zadeh N G. 2023. A meta-analysis of the genetic contribution to greenhouse gas emission in sheep. Journal of Animal Breeding Genetics140, 49–59.

Hook S E, Wright A D, Mcbride B W. 2010. Methanogens: Methane producers of the rumen and mitigation strategies. Archaea2010, 945785.

Hristov A N, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, Dijkstra J, Montes F, Oh J, Kebreab E. 2013. Special topics-Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. Journal of Animal Science91, 5095–5113.

Hu W L, Liu J X, Ye J A, Wu Y M, Guo Y Q. 2005. Effect of tea saponin on rumen fermentation in vitroAnimal Feed Science and Technology120, 333–339.

Huang F, Li W, Xu H, Qin H, He Z G. 2019. Cordycepin kills Mycobacterium tuberculosis through hijacking the bacterial adenosine kinase. PLoS ONE14, e0218449.

IPCC (Intergovernmental Panel on Climate Change). 2019. Climate Change and Land: An Intergovernmental Panel on Climate Change Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.

Jiang Q, Lou Z, Wang H, Chen C. 2019. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilisJournal of Microbiology57, 288–297.

Jin W, Cheng Y F, Mao S Y, Zhu W Y. 2011. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane. Bioresource Technology102, 7925–7931.

Kim W, Hanigan M, Lee S, Lee S, Kim D, Hyun J, Yeo J, Lee S. 2014. Effects of Cordyceps militaris on the growth of rumen microorganisms and in vitro rumen fermentation with respect to methane emissions. Journal of Dairy Science97, 7065–7075.

Lee S J, Lee Y J, Eom J S, Kim H S, Choi Y Y, Jo S U, Kang S N, Park H Y, Kim D H, Lee S S. 2020. Effects of the appropriate addition of antioxidants from Pinus densiflora and Mentha canadensis extracts on methane emission and rumen fermentation. Animals10, 1888.

Li Q S, Wang R, Ma Z Y, Zhang X M, Jiao J Z, Zhang Z G, Ungerfeld E M, Yi K L, Zhang B Z, Long L, Long Y, Tao Y, Huang T, Greening C, Tan Z L, Wang M. 2022. Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants. ISME Journal16, 2535–2546.

Li Y, Gao J, Lv J, Lambo M T, Wang Y, Wang L, Zhang Y. 2023. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. Journal of Dairy Science106, 1803–1814.

Li Y, Jin W, Mu C, Cheng Y, Zhu W. 2017. Indigenously associated methanogens intensified the metabolism in hydrogenosomes of anaerobic fungi with xylose as substrate. Journal of Basic Microbiology57, 933–940.

Li Y, Lv J, Wang J, Zhou S, Zhang G, Wei B, Sun Y, Lan Y, Dou X, Zhang Y. 2021. Changes in carbohydrate composition in fermented total mixed ration and its effects on in vitro methane production and microbiome. Frontiers in Microbiology12, 738334.

Liang J, Nabi M, Zhang P, Zhang G, Cai Y, Wang Q, Zhou Z, Ding Y. 2020. Promising biological conversion of lignocellulosic biomass to renewable energy with rumen microorganisms: A comprehensive review. Renewable and Sustainable Energy Reviews134, 110335.

Lyu Z, Shao N, Akinyemi T, Whitman W B. 2018. Methanogenesis. Current Biology28, R727–R732.

Macome F M, Pellikaan W F, Hendriks W H, Warner D, Schonewille J T, Cone J W. 2018. In vitro gas and methane production in rumen fluid from dairy cows fed grass silages differing in plant maturity, compared to in vivo data. Journal of Animal Physiology and Animal Nutrition102, 843–852.

McCabe M S, Cormican P, Keogh K, O’connor A, O’hara E, Palladino R A, Kenny D A, Waters S M. 2015. Illumina MiSeq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS ONE10, e0133234.

Mikhaylov A, Moiseev N, Aleshin K, Burkhardt T. 2020. Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues7, 2897–2913.

Miller T L. 2015. Methanobrevibacter. In: Bergey’s Manual of Systematics of Archaea and Bacteria, John Wiley & Sons, Inc, USA. pp. 1–14.

Mustapha N A, Sharuddin S S, Zainudin M H M, Ramli N, Shirai Y, Maeda T. 2017. Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. Journal of Cleaner Production165, 621–629.

Nakamura K, Shinozuka K, Yoshikawa N. 2015. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensisJournal of Pharmacological Sciences127, 53–56.

Nampoothiri V M, Mohini M, Malla B A, Mondal G, Pandita S. 2020. Animal performance, and enteric methane, manure methane and nitrous oxide emissions from Murrah buffalo calves fed diets with different forage-to-concentrate ratios. Animal Production Science60, 780–789.

Newbold C J, Ramos-Morales E. 2020. Review: Ruminal microbiome and microbial metabolome: Effects of diet and ruminant host. Animal14, s78-s86.

NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle: 2001. National Academies Press, USA.

Odongo N, Bagg R, Vessie G, Dick P, Or-Rashid M, Hook S, Gray J, Kebreab E, France J, Mcbride B. 2007. Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science90, 1781–1788.

Pacífico C, Petri R M, Ricci S, Mickdam E, Wetzels S U, Neubauer V, Zebeli Q. 2021. Unveiling the bovine epimural microbiota composition and putative function. Microorganisms9, 342.

Palangi V, Taghizadeh A, Abachi S, Lackner M. 2022. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability14, 13229.

Paterson R R. 2008. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry69, 1469–1495.

Qin P, Li X, Yang H, Wang Z Y, Lu D. 2019. Therapeutic potential and biological applications of cordycepin and metabolic mechanisms in cordycepin-producing fungi. Molecules24, 2231.

Qiu X, Qin X, Chen L, Chen Z, Hao R, Zhang S, Yang S, Wang L, Cui Y, Li Y. 2022. Serum biochemical parameters, rumen fermentation, and rumen bacterial communities are partly driven by the breed and sex of cattle when fed high-grain diet. Microorganisms10, 323.

Ramos A F, Terry S A, Holman D B, Breves G, Pereira L G, Silva A G, Chaves A V. 2018. Tucumã oil shifted ruminal fermentation, reducing methane production and altering the microbiome but decreased substrate digestibility within a RUSITEC fed a mixed hay–concentrate diet. Frontiers in Microbiology9, 1647.

Ranilla M J, Jouany J P, Morgavi D P. 2007. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitroLetters in Applied Microbiology45, 675–680.

Ren H, Su X, Bai H, Yang Y, Wang H, Dan Z, Lu J, Wu S, Cai C, Cao Y. 2019. Specific enrichment of microbes and increased ruminal propionate production: The potential mechanism underlying the high energy efficiency of Holstein heifers fed steam-flaked corn. AMB Express9, 1–11.

Santra A, Karim S. 2003. Rumen manipulation to improve animal productivity. Asian-australasian Journal of Animal Sciences16, 748–763.

Sheng D D, Zhao S M, Gao L, Zheng H F, Liu W T, Hou J, Jin Y X, Ye F, Zhao Q D, Li R, Zhao N P, Zhang L, Han Z P, Wei L X. 2019. BabaoDan attenuates high-fat diet-induced non-alcoholic fatty liver disease via activation of AMPK signaling. Cell and Bioscience9, 77.

Shin S, Moon S, Park Y, Kwon J, Lee S, Lee C K, Cho K, Ha N J, Kim K. 2009. Role of cordycepin and adenosine on the phenotypic switch of macrophages via induced anti-inflammatory cytokines. Immune Network9, 255–264.

Siegert M, Li X F, Yates M D, Logan B E. 2014. The presence of hydrogenotrophic methanogens in the inoculum improves methane gas production in microbial electrolysis cells. Frontiers in Microbiology5, 778.

Soliva C, Hess H. 2007. Measuring methane emission of ruminants by in vitro and in vivo techniques. Measuring Methane Production from Ruminants, Springer, Germany.pp.15–31.

Tapio I, Snelling T J, Strozzi F, Wallace R J. 2017. The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology8, 7.

Thakur S, Mohini M, Malik T A, Howal S, Varun T K, Madavi A, Yadev R D, Mondal G, Datt C. 2021. Performance of crossbred goat kids fed with diets varying in concentrate-to-forage ratio: Intake, nutrient utilization, enteric methane emission and body weight changes. Biological Rhythm Research52, 1334–1341.

Thompson L R, Rowntree J E. 2020. Invited review: Methane sources, quantification, and mitigation in grazing beef systems. Applied Animal Science36, 556–573.

Tuli H S, Sharma A K, Sandhu S S, Kashyap D. 2013. Cordycepin: A bioactive metabolite with therapeutic potential. Life Sciences93, 863–869.

Vargas J E, Andrés S, López-Ferreras L, Snelling T J, Yáñez-Ruíz D R, García-Estrada C, López S. 2020. Dietary supplemental plant oils reduce methanogenesis from anaerobic microbial fermentation in the rumen. Scientific Reports10, 1–9.

Wang J K, Ye J A, Liu J X. 2012. Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance-a review. Tropical Animal Health and Production44, 697–706.

Wang K, Xiong B, Zhao X. 2022. Could propionate formation be used to reduce enteric methane emission in ruminants? Science of the Total Environment855, 158867.

Wang Y, Yu Q, Wang X, Song J, Lambo M T, Huang J, He P, Li Y, Zhang Y. 2023. Replacing alfalfa hay with industrial hemp ethanol extraction byproduct and Chinese wildrye hay: Effects on lactation performance, plasma metabolites, and bacterial communities in Holstein cows. Frontiers in Veterinary Science10, 1061219.

Wei X, Ouyang K, Long T, Liu Z, Li Y, Qiu Q. 2022. Dynamic variations in rumen fermentation characteristics and bacterial community composition during in vitro fermentation. Fermentation8, 276.

Wei Z, Zhang B, Liu J. 2018. Effects of the dietary nonfiber carbohydrate content on lactation performance, rumen fermentation, and nitrogen utilization in mid-lactation dairy cows receiving corn stover. Journal of Animal Science and Biotechnology9, 20.

Xin H S, Khan N A, Liu X, Jiang X, Sun F, Zhang S Z, Sun Y K, Zhang Y G, Li X. 2021. Profiles of odd- and branched-chain fatty acids and their correlations with rumen fermentation parameters, microbial protein synthesis, and bacterial populations based on pure carbohydrate incubation in vitroFrontiers in Nutrition8, 733352.

Yang C, Xu Z, Deng Q, Huang Q, Wang X, Huang F. 2020. Beneficial effects of flaxseed polysaccharides on metabolic syndrome via gut microbiota in high-fat diet fed mice. Food Research International131, 108994.

Zain-Ul-Abedin, Lopez J M, Freese E. 1983. Induction of bacterial differentiation by adenine-and adenosine-analogs and inhibitors of nucleic acid synthesis. Nucleosides and Nucleotides2, 257–274.

Zhang N N, Hu G J, Guo K, Fu T, Lian H X, Wang L F, Gao T Y. 2021. Rumen bacteria and epithelial metSabolism contribute to improving N utilization efficiency of calves. Animal Biotechnology33, 1480–1491.

Zhao L, Caro E, Holman D B, Gzyl K E, Moate P J, Chaves A V. 2020. Ozone decreased enteric methane production by 20% in an in vitro rumen fermentation system. Frontiers in Microbiology11, 571537.

Zhou R, Wu J, Lang X, Liu L, Casper D P, Wang C, Zhang L, Wei S. 2020. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science103, 2303–2314.

No related articles found!
No Suggested Reading articles found!