Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1270-1284    DOI: 10.1016/j.jia.2024.01.026
Section 2: Animal genetics Advanced Online Publication | Current Issue | Archive | Adv Search |
Effects of ratios of yak to cattle inocula on methane production and fiber digestion in rumen in vitro cultures

Weiwei Wang1, 2, Wei Guo1, 2, Jianxin Jiao1, Emilio M Ungerfeld3, Xiaoping Jing1, Xiaodan Huang4, Allan A Degen5, Yu Li1, Sisi Bi1, Ruijun Long1#

1 State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730020, China

2 Key Laboratory of Plateau Mountain Animal Genetics, Breeding and Reproduction, Ministry of Education/College of Animal Science, Guizhou University, Guiyang 550025, China

3 Centro Regional de Investigación Carillanca, Instituto de Investigaciones Agropecuarias INIA, Vilcún, La Araucanía 4880000, Chile

4 School of Public Health, Lanzhou University, Lanzhou 730020, China

5 Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva 8410500, Israel

 Highlights 
Ratios of yak (YRI) and cattle rumen inoculum (CRI) incubated substrate.
Methane decreased, while fiber digestibility and volatile fatty acids increased with an increase in YRI.
Metabolic hydrogen flux and Gibbs energy changed with different ratios.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  牦牛(Bos grunniens)能够适应青藏高原的恶劣环境,与黄牛(Bos taurus)相比,其肠道消化所排放的甲烷(CH4)较少,且对粗饲料的消化降解能力较强。为研究牦牛瘤胃液对黄牛甲烷产量抑制和提高其饲粮降解率的潜力,本研究将牦牛(YRI)与黄(CRI)的瘤胃5种比例体外混合(YRI: CRI,百分比基础):(10:100(对照);(2)25:75;(3)50:50;(4)75:25;(5)100:0;以燕麦干草(Avena satival)作为发酵底物,持续72 h体外混合发酵,设置12 h24 h48 h72 h作为发酵参数监测时间点研究发现:与0:100(对照)相比,发酵的大多数时间点,50:5075:25100:0YRI: CRI比例发酵生成的总气体量、CH4量和累积产生的氢气(H2)量均。从发酵的12 h起,随着YRI的增加,二氧化碳(CO2产量呈线性下降P < 0.05)发酵至72 h时,50:5075:25比例的干物质降解率(同比0:100比例,分别高7.71%4.11%)和酸性洗涤纤维降解率(同比0:100比例,分别高15.5%7.61%)高于0:100(对照)比例(P < 0.05)。增加YRI比例后,混合发酵通常会增加瘤胃发酵液中的挥发性脂肪酸(VFA)浓度,同时降低代谢氢([2H])平衡中流入CH4的比例,并降低[2H]的回收率。较低的[2H]回收率表明牦牛瘤胃液发酵中存在更多未知的[2H]受体通过计算化学代谢途径吉布斯能变(∆G),发现还原乙酸途径(4 H2 +2 CO2 → CH3COOH + 2 H2O吉布斯自由能变(∆G)为负值,其反应自发进行。本研究结果将益于今后开展以下研究1)探究更多潜在的[2H]受体以助于CH4减排;2)挖掘更多参与纤维降解的核心微生物3)牦牛瘤胃液如何贡献于其它反刍家畜减排。与牛相比,牦牛瘤胃液发酵的甲烷且对饲粮的降解率更高。而随着近年发展起来的多组学与微生物培养技术相结合,也将有助于更好地了解物种间瘤胃发酵机制间的差异。

Abstract  
Yaks are well-adapted to the harsh environment of the Tibetan Plateau, and they emit less enteric methane (CH4) and digest poor-quality forage better than cattle.  To examine the potential of yak rumen inoculum to mitigate CH4 production and improve digestibility in cattle, we incubated substrate with rumen inoculum from yak (YRI) and cattle (CRI) in vitro in five ratios (YRI:CRI): (1) 0:100 (control), (2) 25:75, (3) 50:50, (4) 75:25 and (5) 100:0 for 72 h.  The YRI: CRI ratios of 50:50, 75:25 and 100:0 produced less total gas and CH4 and accumulated less hydrogen (H2) than 0:100 (control) at most time points.  From 12 h onwards, there was a linear decrease (P<0.05) in carbon dioxide (CO2) production with increasing YRI:CRI ratio.  At 72 h, the ratios of 50:50 and 75:25 had higher dry matter (+7.71% and +4.11%, respectively), as well as higher acid detergent fiber digestibility (+15.5% and +7.61%, respectively), when compared to the 0:100 ratio (P<0.05).  Increasing the proportion of YRI generally increased total VFA concentrations, and, concomitantly, decreased the proportion of metabolic hydrogen ([2H]) incorporated into CH4, and decreased the recovery of [2H].  The lower [2H] recovery indicates unknown [2H] sinks in the culture.  Estimated Gibbs free energy changes (ΔG) for reductive acetogenesis were negative, indicating the thermodynamic feasibility of this process.  It would be beneficial to identify: 1) the alternative [2H] sinks, which could help mitigate CH4 emission, and 2) core microbes involved in fiber digestion.  This experiment supported lower CH4 emission and greater nutrient digestibility of yaks compared to cattle.  Multi-omics combined with microbial culture technologies developed in recent years could help to better understand fermentation differences among species.


Keywords:  yak rumen fluid       methane        digestibility        metabolic hydrogen   
Received: 25 March 2023   Accepted: 27 November 2023
Fund: 
This research was supported by the National Natural Science Foundation of China (32072757 and U21A20250).  The authors thank Wu An (Fulai Livestock Co. Inc., Gansu Province, China) for sample collections.
About author:  Weiwei Wang, E-mail: wangww14@lzu.edu.cn; #Correspondence Ruijun Long, Tel: +86-931-8912884, E-mail: longrj@lzu.edu.cn

Cite this article: 

Weiwei Wang, Wei Guo, Jianxin Jiao, Emilio M Ungerfeld, Xiaoping Jing, Xiaodan Huang, Allan A Degen, Yu Li, Sisi Bi, Ruijun Long. 2025. Effects of ratios of yak to cattle inocula on methane production and fiber digestion in rumen in vitro cultures. Journal of Integrative Agriculture, 24(4): 1270-1284.

AOAC (Association of Official Analytical Chemists). 2001. Official Methods of Analysis. Association of Official Analytical Chemists, Washington, D.C., USA.

Blümmel M, Aiple K P, Steingaβ H, Becker K. 1999. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. Journal of Animal Physiology and Animal Nutrition81, 157–167.

Blümmel M, Makkar H, Becker K. 1997. In vitro gas production: A technique revisited. Journal of Animal Physiology and Animal Nutrition77, 24–34.

Boone D R, Johnson R L, Liu Y. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Applied and Environmental Microbiology55, 1735–1741.

Bueno I C, Brandi R A, Franzolin R, Benetel G, Fagundes G M, Abdalla A L, Louvandini H, Muir J. 2015. In vitro methane production and tolerance to condensed tannins in five ruminant species. Animal Feed Science and Technology205, 1–9.

Choudhury P K, Salem A Z M, Jena R, Kumar S, Singh R, Puniya A K. 2015. Rumen microbiology: An overview. In: Kumar A, Rameshwar P, Devki S, Kamra N, eds., Rumen MicrobiologyFrom Evolution to Revolution. Springer, New Delhi. pp. 3–16.

Ding X Z, Long R J, Kreuzer M, Mi J D, Yang B. 2010. Methane emissions from yak (Bos grunniens) steers grazing or kept indoors and fed diets with varying forage: Concentrate ratio during the cold season on the Qinghai-Tibetan Plateau. Animal Feed Science and Technology162, 91–98.

Dong Y, Bae H, McAllister T, Mathison G, Cheng K J. 1999. Effects of exogenous fibrolytic enzymes, α-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Canadian Journal of Animal Science79, 491–498.

Erwin E S, Marco G J, Emery E M. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science44, 1768–1771.

van Gastelen S, Dijkstra J, Bannink A. 2019. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? Journal of Dairy Science102, 6109–6130.

Giraldo L, Ranilla M J, Tejido M, Carro M D. 2007. Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermentersBritish Journal of Nutrition98, 753–761.

Godwin S, Kang A, Gulino L M, Manefield M, Gutierrez-Zamora M L, Kienzle M, Klieve A V. 2014. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing. The ISME Journal8, 1855–1865.

Hackmann T J. 2013. Responses of rumen microbes to excess carbohydrate. Ph D thesis, The Ohio State University, Ohio State.

Hackmann T J, Firkins J L. 2015. Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology6, 465.

Hamer W J. 1968. Theoretical mean activity coefficients of strong electrolytes in aqueous solutions from 0 to 100°C. In: National Standard Reference Data Series 24National Bureau of Standards. United States Departments of Commerce, Washington, D.C., USA.

He Z, Ribeiro G, Beauchemin K, McAllister T, Yang W. 2019. Inoculum source and transfer of rumen contents from bison to cattle improved in vitro gas production and feed digestibility, but not the responses to exogenous enzymes supplementation. Animal Feed Science and Technology248, 37–46.

Hristov A, Broderick G. 1994. In vitro determination of ruminal protein degradability using [15N] ammonia to correct for microbial nitrogen uptake. Journal of Animal Science72, 1344–1354.

Huang X D. 2013. Rumen microbial diversity of ruminants in Qinghai Tibetan Plateau. Ph D thesis. Lanzhou University, Lanzhou. (in Chinese)

Huws S A, Creevey C J, Oyama L B, Mizrahi I, Denman S E, Popova M. 2018. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Frontiers in Microbiology9, 2161.

Joblin K. 1999. Ruminal acetogens and their potential to lower ruminant methane emissions. Australian Journal of Agricultural Research50, 1307–1314.

Johnson K A, Johnson D E. 1995. Methane emissions from cattle. Journal of Animal Science73, 2483–2492.

Karadagli F, Rittmann B E. 2007. Thermodynamic and kinetic analysis of the H2 threshold for Methanobacterium bryantii MoH. Biodegradation18, 439–452.

Kohn R, Boston R. 2000. The role of thermodynamics in controlling rumen metabolism. In: McNamara J P, France J, Beever D E, eds., Modelling Nutrient Utilization in Farm Animals. Commonwealth Agricultural Bureaux International, Cape Town. pp. 11–24.

Marty R, Demeyer D. 1973. The effect of inhibitors of methane production of fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses. British Journal of Nutrition30, 369–376.

McCartney D H, Block H C, Dubeski P L, Ohama A J. 2006. Review: The composition and availability of straw and chaff from small grain cereals for beef cattle in western Canada. Canadian Journal of Animal Science86, 443–455.

Meale S, Chaves A, Baah J, McAllister T. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian–Australasian Journal of Animal Sciences25, 86.

Menke K H, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development28, 7–55.

NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, D.C., USA.

Ørskov E R, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science92, 499–503.

Oss D B, Ribeiro J G O, Marcondes M I, Yang W, Beauchemin K A, Forster R J. 2016. Synergism of cattle and bison inoculum on ruminal fermentation and select bacterial communities in an artificial rumen (Rusitec) fed a barley straw based diet. Frontiers in Microbiology7, 2032.

Pereira A M, de Lurdes Nunes Enes Dapkevicius M, Borba A E. 2022. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Animal Microbiome4, 5.

Poulsen M, Schwab C, Borg Jensen B, Engberg R M, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T. 2013. Methylotrophic methanogenic thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications4, 66–78.

Santos C G Y, Bettucci L, Brambillasca S, Cajarville C. 2020. Storage time and condensed tannin content of high-moisture sorghum grains: Effects on in vitro fermentation and mold populations. Animal Nutrition6, 92–97.

Schofield P. 2000. Gas production methods. In: D’Mello J P F, ed., Farm Animal Metabolism and Nutrition. Commonwealth Agricultural Bureaux International, United Kingdom. pp. 209–232.

Shi F, Wang H, Degen A A, Zhou J, Guo N, Mudassar S, Long R J. 2019. Rumen parameters of yaks (Bos grunniens) and indigenous cattle (Bos taurus) grazing on the Qinghai-Tibetan Plateau. Journal of Animal Physiology and Animal Nutrition103, 969–976.

Shi W, Moon C D, Leahy S C, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly W J, Atua R, Sang C, Soni P, Li D, Pinares-Patiño C S, McEwan J C, Janssen P H, Chen F, Visel A, Wang Z, Attwood G T, Rubin E M. 2014. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Research241517–1525.

Van Soest P J, Robertson J, Lewis B. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74, 3583–3597.

Terry S A, Badhan A, Wang Y, Chaves A V, McAllister T A. 2019. Fibre digestion by rumen microbiota - a review of recent metagenomic and metatranscriptomic studies. Canadian Journal of Animal Science99, 678–692.

Ungerfeld E M. 2015a. Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Frontiers in Microbiology6, 1272.

Ungerfeld E M. 2015b. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology6, 37.

Ungerfeld E M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology11, 589.

Ungerfeld E M, Kohn R. 2006. The role of thermodynamics in the control of ruminal fermentation In: Sejrsen K, Hvelplund T, Nielsen M O, eds., Ruminant PhysiologyDigestionMetabolism and Impact of Nutrition on Gene ExpressionImmunology and Stress. Wageningen Academic Publishers, the Netherlands. pp. 55–85.

Wang H C. 2009. Urinary purine derivative excretion as a method for estimation of rumen microbial protein production of yak in Qinghai Tibetan plateau. Ph D, thesis, Lanzhou University, Lanzhou. (in Chinese)

Wang M, Ungerfeld E M, Wang R, Zhou C S, Basang Z Z, Ao S M, Tan Z L. 2016. Supersaturation of dissolved hydrogen and methane in rumen of Tibetan sheep. Frontiers in Microbiology7, 850.

Wang W W. 2020. Study on characteristics and mechanism of the cross-incubation of rumen inoculum from yak-cattle and tibetan sheep-small tailed han sheep. Ph D thesis, Lanzhou University, Lanzhou. (in Chinese)

Wang W W, Ungerfeld E M, Degen A A, Jing X P, Guo W, Zhou J W, Huang X D, Mudassar S, Shi F Y, Bi S S, Ding L M, Shang Z H, Long R J. 2020. Ratios of rumen inoculum from Tibetan and Small-tailed Han sheep influenced in vitro fermentation and digestibility. Animal Feed Science and Technology267, 114562.

Weimer P, Stevenson D, Mantovani H, Man S. 2010. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. Journal of Dairy Science93, 5902–5912.

Weimer P J. 2015. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Frontiers in Microbiology6, 296.

Yáñez-Ruiz D R, Abecia L, Newbold C J. 2015. Manipulating rumen microbiome and fermentation through interventions during early life: A review. Frontiers in Microbiology6, 1133.

Yáñez-Ruiz D R, Bannink A, Dijkstra J, Kebreab E, Morgavi D P, O’Kiely P, Reynolds C K, Schwarm A, Shingfield K J, Yu Z, Hristov A N. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants - a review. Animal Feed Science and Technology216, 1–18.

Yu S, Shi W, Yang B, Gao G, Chen H, Cao L, Yu Z T, Wang J K. 2020. Effects of repeated oral inoculation of artificially fed lambs with lyophilized rumen fluid on growth performance, rumen fermentation, microbial population and organ development. Animal Feed Science and Technology264, 114465.

Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, Wang W W, Qiu Q, Huang X D, Zhou J W, Long R J, Zhao F Q, Shi P. 2016. Convergent evolution of rumen microbiomes in high-altitude mammals. Current Biology26, 1873–1879.

Zhao C, Wang L, Ke S, Chen X, Kenez A, Xu W, Wang D, Zhang F, Li Y, Cui Z, Qiao Y, Wang J, Sun W, Zhao J, Yao J H, Yu Z T, Cao Y C. 2022. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Animal Nutrition11, 201–214.

Zhao Y, Zhao G. 2022. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. Animal Nutrition9, 320–326.

Zhou J W, Liu H, Zhong CL, Degen A A, Yang G, Zhang Y, Qian J, Wang W W, Hao L Z, Qiu Q, Shang Z H, Guo X S, Ding L M, Long R J. 2018. Apparent digestibility, rumen fermentation, digestive enzymes and urinary purine derivatives in yaks and Qaidam cattle offered forage-concentrate diets differing in nitrogen concentration. Livestock Science208, 14–21.

Zhou J W, Zhong C, Liu H, Degen A, Titgemeyer E, Ding L, Shang Z, Guo X, Qiu Q, Li Z, Yang G, Long R J. 2017. Comparison of nitrogen utilization and urea kinetics between yaks (Bos grunniens) and indigenous cattle (Bos taurus). Journal of Animal Science95, 4600–4612.

No related articles found!
No Suggested Reading articles found!