AOAC (Association of Official Analytical Chemists). 2001. Official Methods of Analysis. Association of Official Analytical Chemists, Washington, D.C., USA.
Blümmel M, Aiple K P, Steingaβ H, Becker K. 1999. A note on the stoichiometrical relationship of short chain fatty acid production and gas formation in vitro in feedstuffs of widely differing quality. Journal of Animal Physiology and Animal Nutrition, 81, 157–167.
Blümmel M, Makkar H, Becker K. 1997. In vitro gas production: A technique revisited. Journal of Animal Physiology and Animal Nutrition, 77, 24–34.
Boone D R, Johnson R L, Liu Y. 1989. Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Applied and Environmental Microbiology, 55, 1735–1741.
Bueno I C, Brandi R A, Franzolin R, Benetel G, Fagundes G M, Abdalla A L, Louvandini H, Muir J. 2015. In vitro methane production and tolerance to condensed tannins in five ruminant species. Animal Feed Science and Technology, 205, 1–9.
Choudhury P K, Salem A Z M, Jena R, Kumar S, Singh R, Puniya A K. 2015. Rumen microbiology: An overview. In: Kumar A, Rameshwar P, Devki S, Kamra N, eds., Rumen Microbiology: From Evolution to Revolution. Springer, New Delhi. pp. 3–16.
Ding X Z, Long R J, Kreuzer M, Mi J D, Yang B. 2010. Methane emissions from yak (Bos grunniens) steers grazing or kept indoors and fed diets with varying forage: Concentrate ratio during the cold season on the Qinghai-Tibetan Plateau. Animal Feed Science and Technology, 162, 91–98.
Dong Y, Bae H, McAllister T, Mathison G, Cheng K J. 1999. Effects of exogenous fibrolytic enzymes, α-bromoethanesulfonate and monensin on fermentation in a rumen simulation (RUSITEC) system. Canadian Journal of Animal Science, 79, 491–498.
Erwin E S, Marco G J, Emery E M. 1961. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. Journal of Dairy Science, 44, 1768–1771.
van Gastelen S, Dijkstra J, Bannink A. 2019. Are dietary strategies to mitigate enteric methane emission equally effective across dairy cattle, beef cattle, and sheep? Journal of Dairy Science, 102, 6109–6130.
Giraldo L, Ranilla M J, Tejido M, Carro M D. 2007. Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters. British Journal of Nutrition, 98, 753–761.
Godwin S, Kang A, Gulino L M, Manefield M, Gutierrez-Zamora M L, Kienzle M, Klieve A V. 2014. Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing. The ISME Journal, 8, 1855–1865.
Hackmann T J. 2013. Responses of rumen microbes to excess carbohydrate. Ph D thesis, The Ohio State University, Ohio State.
Hackmann T J, Firkins J L. 2015. Maximizing efficiency of rumen microbial protein production. Frontiers in Microbiology, 6, 465.
Hamer W J. 1968. Theoretical mean activity coefficients of strong electrolytes in aqueous solutions from 0 to 100°C. In: National Standard Reference Data Series 24, National Bureau of Standards. United States Departments of Commerce, Washington, D.C., USA.
He Z, Ribeiro G, Beauchemin K, McAllister T, Yang W. 2019. Inoculum source and transfer of rumen contents from bison to cattle improved in vitro gas production and feed digestibility, but not the responses to exogenous enzymes supplementation. Animal Feed Science and Technology, 248, 37–46.
Hristov A, Broderick G. 1994. In vitro determination of ruminal protein degradability using [15N] ammonia to correct for microbial nitrogen uptake. Journal of Animal Science, 72, 1344–1354.
Huang X D. 2013. Rumen microbial diversity of ruminants in Qinghai Tibetan Plateau. Ph D thesis. Lanzhou University, Lanzhou. (in Chinese)
Huws S A, Creevey C J, Oyama L B, Mizrahi I, Denman S E, Popova M. 2018. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Frontiers in Microbiology, 9, 2161.
Joblin K. 1999. Ruminal acetogens and their potential to lower ruminant methane emissions. Australian Journal of Agricultural Research, 50, 1307–1314.
Johnson K A, Johnson D E. 1995. Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492.
Karadagli F, Rittmann B E. 2007. Thermodynamic and kinetic analysis of the H2 threshold for Methanobacterium bryantii MoH. Biodegradation, 18, 439–452.
Kohn R, Boston R. 2000. The role of thermodynamics in controlling rumen metabolism. In: McNamara J P, France J, Beever D E, eds., Modelling Nutrient Utilization in Farm Animals. Commonwealth Agricultural Bureaux International, Cape Town. pp. 11–24.
Marty R, Demeyer D. 1973. The effect of inhibitors of methane production of fermentation pattern and stoichiometry in vitro using rumen contents from sheep given molasses. British Journal of Nutrition, 30, 369–376.
McCartney D H, Block H C, Dubeski P L, Ohama A J. 2006. Review: The composition and availability of straw and chaff from small grain cereals for beef cattle in western Canada. Canadian Journal of Animal Science, 86, 443–455.
Meale S, Chaves A, Baah J, McAllister T. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian–Australasian Journal of Animal Sciences, 25, 86.
Menke K H, Steingass H. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55.
NRC (National Research Council). 2001. Nutrient Requirements of Dairy Cattle. 7th ed. National Academy Press, Washington, D.C., USA.
Ørskov E R, McDonald I. 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92, 499–503.
Oss D B, Ribeiro J G O, Marcondes M I, Yang W, Beauchemin K A, Forster R J. 2016. Synergism of cattle and bison inoculum on ruminal fermentation and select bacterial communities in an artificial rumen (Rusitec) fed a barley straw based diet. Frontiers in Microbiology, 7, 2032.
Pereira A M, de Lurdes Nunes Enes Dapkevicius M, Borba A E. 2022. Alternative pathways for hydrogen sink originated from the ruminal fermentation of carbohydrates: Which microorganisms are involved in lowering methane emission? Animal Microbiome, 4, 5.
Poulsen M, Schwab C, Borg Jensen B, Engberg R M, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T. 2013. Methylotrophic methanogenic thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications, 4, 66–78.
Santos C G Y, Bettucci L, Brambillasca S, Cajarville C. 2020. Storage time and condensed tannin content of high-moisture sorghum grains: Effects on in vitro fermentation and mold populations. Animal Nutrition, 6, 92–97.
Schofield P. 2000. Gas production methods. In: D’Mello J P F, ed., Farm Animal Metabolism and Nutrition. Commonwealth Agricultural Bureaux International, United Kingdom. pp. 209–232.
Shi F, Wang H, Degen A A, Zhou J, Guo N, Mudassar S, Long R J. 2019. Rumen parameters of yaks (Bos grunniens) and indigenous cattle (Bos taurus) grazing on the Qinghai-Tibetan Plateau. Journal of Animal Physiology and Animal Nutrition, 103, 969–976.
Shi W, Moon C D, Leahy S C, Kang D, Froula J, Kittelmann S, Fan C, Deutsch S, Gagic D, Seedorf H, Kelly W J, Atua R, Sang C, Soni P, Li D, Pinares-Patiño C S, McEwan J C, Janssen P H, Chen F, Visel A, Wang Z, Attwood G T, Rubin E M. 2014. Methane yield phenotypes linked to differential gene expression in the sheep rumen microbiome. Genome Research, 24, 1517–1525.
Van Soest P J, Robertson J, Lewis B. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597.
Terry S A, Badhan A, Wang Y, Chaves A V, McAllister T A. 2019. Fibre digestion by rumen microbiota - a review of recent metagenomic and metatranscriptomic studies. Canadian Journal of Animal Science, 99, 678–692.
Ungerfeld E M. 2015a. Limits to dihydrogen incorporation into electron sinks alternative to methanogenesis in ruminal fermentation. Frontiers in Microbiology, 6, 1272.
Ungerfeld E M. 2015b. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: A meta-analysis. Frontiers in Microbiology, 6, 37.
Ungerfeld E M. 2020. Metabolic hydrogen flows in rumen fermentation: Principles and possibilities of interventions. Frontiers in Microbiology, 11, 589.
Ungerfeld E M, Kohn R. 2006. The role of thermodynamics in the control of ruminal fermentation In: Sejrsen K, Hvelplund T, Nielsen M O, eds., Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress. Wageningen Academic Publishers, the Netherlands. pp. 55–85.
Wang H C. 2009. Urinary purine derivative excretion as a method for estimation of rumen microbial protein production of yak in Qinghai Tibetan plateau. Ph D, thesis, Lanzhou University, Lanzhou. (in Chinese)
Wang M, Ungerfeld E M, Wang R, Zhou C S, Basang Z Z, Ao S M, Tan Z L. 2016. Supersaturation of dissolved hydrogen and methane in rumen of Tibetan sheep. Frontiers in Microbiology, 7, 850.
Wang W W. 2020. Study on characteristics and mechanism of the cross-incubation of rumen inoculum from yak-cattle and tibetan sheep-small tailed han sheep. Ph D thesis, Lanzhou University, Lanzhou. (in Chinese)
Wang W W, Ungerfeld E M, Degen A A, Jing X P, Guo W, Zhou J W, Huang X D, Mudassar S, Shi F Y, Bi S S, Ding L M, Shang Z H, Long R J. 2020. Ratios of rumen inoculum from Tibetan and Small-tailed Han sheep influenced in vitro fermentation and digestibility. Animal Feed Science and Technology, 267, 114562.
Weimer P, Stevenson D, Mantovani H, Man S. 2010. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. Journal of Dairy Science, 93, 5902–5912.
Weimer P J. 2015. Redundancy, resilience, and host specificity of the ruminal microbiota: Implications for engineering improved ruminal fermentations. Frontiers in Microbiology, 6, 296.
Yáñez-Ruiz D R, Abecia L, Newbold C J. 2015. Manipulating rumen microbiome and fermentation through interventions during early life: A review. Frontiers in Microbiology, 6, 1133.
Yáñez-Ruiz D R, Bannink A, Dijkstra J, Kebreab E, Morgavi D P, O’Kiely P, Reynolds C K, Schwarm A, Shingfield K J, Yu Z, Hristov A N. 2016. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants - a review. Animal Feed Science and Technology, 216, 1–18.
Yu S, Shi W, Yang B, Gao G, Chen H, Cao L, Yu Z T, Wang J K. 2020. Effects of repeated oral inoculation of artificially fed lambs with lyophilized rumen fluid on growth performance, rumen fermentation, microbial population and organ development. Animal Feed Science and Technology, 264, 114465.
Zhang Z, Xu D, Wang L, Hao J, Wang J, Zhou X, Wang W W, Qiu Q, Huang X D, Zhou J W, Long R J, Zhao F Q, Shi P. 2016. Convergent evolution of rumen microbiomes in high-altitude mammals. Current Biology, 26, 1873–1879.
Zhao C, Wang L, Ke S, Chen X, Kenez A, Xu W, Wang D, Zhang F, Li Y, Cui Z, Qiao Y, Wang J, Sun W, Zhao J, Yao J H, Yu Z T, Cao Y C. 2022. Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Animal Nutrition, 11, 201–214.
Zhao Y, Zhao G. 2022. Decreasing ruminal methane production through enhancing the sulfate reduction pathway. Animal Nutrition, 9, 320–326.
Zhou J W, Liu H, Zhong CL, Degen A A, Yang G, Zhang Y, Qian J, Wang W W, Hao L Z, Qiu Q, Shang Z H, Guo X S, Ding L M, Long R J. 2018. Apparent digestibility, rumen fermentation, digestive enzymes and urinary purine derivatives in yaks and Qaidam cattle offered forage-concentrate diets differing in nitrogen concentration. Livestock Science, 208, 14–21.
Zhou J W, Zhong C, Liu H, Degen A, Titgemeyer E, Ding L, Shang Z, Guo X, Qiu Q, Li Z, Yang G, Long R J. 2017. Comparison of nitrogen utilization and urea kinetics between yaks (Bos grunniens) and indigenous cattle (Bos taurus). Journal of Animal Science, 95, 4600–4612.
|