Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (10): 3554-3575    DOI: 10.1016/j.jia.2023.11.037
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Identification of banana leaf disease based on KVA and GR-ARNet

Jinsheng Deng1*, Weiqi Huang1*, Guoxiong Zhou1#, Yahui Hu2, Liujun Li3, Yanfeng Wang4

1 College of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha 410004, China
2 Plant Protection Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
3 Department of Soil and Water Systems, College of Agricultural & Life Sciences, University of Idaho, Moscow 83844, USA
4 College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

据世界粮食及农业组织统计,香蕉是世界第二大水果作物,也是贸易量和消费量最大的水果之一,它们在热带和亚热带国家被广泛种植。香蕉叶斑病、香蕉灰纹病和香蕉拟盘多毛菌病等香蕉叶病有可能对香蕉生产造成严重影响。在香蕉叶病检测中,存在着香蕉叶图像噪声干扰和蕉叶疾病具有相似性等问题的干扰,利用机器视觉和神经网络识别香蕉叶病仍然具有挑战性。针对上述问题,本文提出了一种新的方法来识别香蕉叶病。首先,提出一种名为K-scale VisuShrinkd algorithm (KVA)的新型算法蕉叶片图像进行去噪,该算法在半软阈值和中程阈值的基础上引入新的分解尺度k,获得理想的阈值解,并用新建立的阈值函数进行替代,从而达到图像降噪的效果,得到噪声较小的蕉叶片图像。然后,本文在Resnet50网络架构的基础上提出了一种香蕉叶病识别的新型网络,称为 Ghost ResNeSt-Attention RReLU-Swish Net (GR-ARNet)。其中,引入Ghost模块处理蕉叶病信息的冗余特征图,有利于网络对输入特征图信息全面理解,提高网络提取蕉叶病害深度特征信息的效率和识别速度;采用ResNeSt模块调整各通道的权重,增强蕉叶病有用特征信息的通道,抑制注意学习中噪声信息的通道,增强网络对深度特征的识别能力,提高蕉叶病特征提取能力,从而获取到详细的蕉叶病斑特征图,降低相似病害识别的错误率;利用RReLUSwish的混合激活函数加快模型的训练速度,提高网络的泛化能力。本文提出的模型对13021张香蕉叶病图像的平均准确率为96.98%,精确率为89.31%,每秒内可以处理的香蕉叶图像为83张。实验结果表明,本文提出的模型具有较高的识别精度和识别速度,在农业病害防治中具有重要的应用价值。



Abstract  

Banana is a significant crop, and three banana leaf diseases, including Sigatoka, Cordana and Pestalotiopsis, have the potential to have a serious impact on banana production.  Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.  Therefore, this paper proposes a novel method to identify banana leaf diseases.  First, a new algorithm called K-scale VisuShrink algorithm (KVA) is proposed to denoise banana leaf images.  The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds, the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.  Then, this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net (GR-ARNet) based on Resnet50.  In this, the Ghost Module is implemented to improve the network’s effectiveness in extracting deep feature information on banana leaf diseases and the identification speed; the ResNeSt Module adjusts the weight of each channel, increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification; the model’s computational speed is increased using the hybrid activation function of RReLU and Swish.  Our model achieves an average accuracy of 96.98% and a precision of 89.31% applied to 13,021 images, demonstrating that the proposed method can effectively identify banana leaf diseases.


Keywords:  banana leaf diseases        image denoising        Ghost Module        ResNeSt Module        Convolutional Neural Networks        GR-ARNet  
Received: 03 April 2023   Accepted: 07 November 2023
Fund: 
This work was supported by the Changsha Municipal Natural Science Foundation, China (kq2014160); in part by the Key Projects of Department of Education of Hunan Province, China (21A0179), the Hunan Key Laboratory of Intelligent Logistics Technology, China (2019TP1015)  and the National Natural Science Foundation of China (61902436).

About author:  Jinsheng Deng, E-mail: dengjs2023@163.com; Weiqi Huang, E-mail: weiqi_237@163.com; #Correspondence Guoxiong Zhou, E-mail: zhougx01@163.com * These authors contributed equally to this study.

Cite this article: 

Jinsheng Deng, Weiqi Huang, Guoxiong Zhou, Yahui Hu, Liujun Li, Yanfeng Wang. 2024. Identification of banana leaf disease based on KVA and GR-ARNet. Journal of Integrative Agriculture, 23(10): 3554-3575.

Amara J, Bouaziz B, Algergawy A. 2017. A deep learning-based approach for banana leaf diseases classification. In: Datenbanksysteme für BusinessTechnologie und Web (BTW 2017)-Workshopband. Gesellschaft für Informatik e.V., Germany.

Bao Z, Zhang G, Xiong B, Gai S. 2020. New image denoising algorithm using monogenic wavelet transform and improved deep convolutional neural network. Multimedia Tools and Applications79, 7401–7412.

Al Bashish D, Braik M, Bani-Ahmad S. 2011. Detection and classification of leaf diseases using K-means-based segmentation and Neural-networks-based classification. Information Technology Journal10, 267–275.

Binbin Y. 2019. An improved infrared image processing method based on adaptive threshold denoising. EURASIP Journal on Image and Video Processing2019, 5.

Calou V B C, dos Santos Teixeira A, Moreira L C J, Lima C S, de Oliveira J B, de Oliveira M R R. 2020. The use of UAVs in monitoring yellow sigatoka in banana. Biosystems Engineering193, 115–125.

Chouhan S S, Singh U P, Jain S. 2020. Applications of computer vision in plant pathology: A survey. Archives of Computational Methods in Engineering27, 611–632.

Dash S, Verma S, Kavita, Bevinakoppa S, Wozniak M, Shafi J, Ijaz M F. 2022. Guidance image-based enhanced matched filter with modified thresholding for blood vessel extraction. Symmetry14, 194.

Gaikwad C, Thorat B, Bhokare K. 2017. Isolation, culturing and identification of the fungus Cordana musae (Zimm.) Hohn causing leaf spot of banana. Journal of Entomology and Zoology Studies5, 1646–1648.

Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. 2020. Ghostnet: More features from cheap operations. In: Proceedings of the IEEE/CVF Conference on Computer Vision ond Pattern Recognition. IEEE, USA. pp. 1580–1589.

Hang J, Zhang D, Chen P, Zhang J, Wang B. 2019. Classification of plant leaf diseases based on improved convolutional neural network. Sensors19, 4161.

Harsha S S, Anne K. 2016. Gaussian mixture model and deep neural network based vehicle detection and classification. International Journal of Advanced Computer Science and Applications7, doi: 10.14569/IJACSA.2016.070903.

Krizhevsky A, Sutskever I, Hinton G E. 2012. Imagenet classification with deep convolutional neural networks. Advances in neural Information Processing Systems25, doi: 10.1145/3065386.

Kundu N, Rani G, Dhaka V S, Gupta K, Nayak S C, Verma S, Ijaz M F, Woźniak M. 2021. IoT and interpretable machine learning based framework for disease prediction in pearl millet. Sensors21, 5386.

Lei S, Lu M, Lin J, Zhou X, Yang X. 2021. Remote sensing image denoising based on improved semi-soft threshold. SignalImage and Video Processing15, 73–81.

Liang J, Zhao J, Hao Y. 2018. An image denoising and enhancement algorithm for inner and outer ring of wavelet bearings based on improved threshold. Journal of PhysicsConference Series, doi: 10.1088/1742-6596/1069/1/012158.

Lin H, Zhou G, Chen A, Li J, Li M, Zhang W, Hu Y, Yu W T. 2021. EM-ERNet for image-based banana disease recognition. Journal of Food Measurement and Characterization15, 4696–4710.

Lin K, Zhou H, Li D. 2002. Image wavelet denoising using the robust local threshold. Journal of Electronics (China), 19, 8–13.

Long S, Zhou G, Wang H, Zhou X, Chen J, Gao J. 2020. Denoising of lidar echo signal based on wavelet adaptive threshold method. The International Archives of the PhotogrammetryRemote Sensing and Spatial Information Sciences42, 215–220.

Lv M, Zhou G, He M, Chen A, Zhang W, Hu Y. 2020. Maize leaf disease identification based on feature enhancement and DMS-robust alexnet. IEEE Access8, 57952–57966.

Ma Y, Zhu J, Huang J. 2019. Wavelet denoising of remote sensing image based on adaptive threshold function. In: Proceedings of the 3rd International Conference on Video and Image Processing. ACM, USA. pp. 256–261.

Mosqueda A, Medrano K, Gonzales H, Yoshikawa K. 2019. Effect of hydrothermal and washing treatment of banana leaves on co-gasification reactivity with coal. Energy Procedia158, 785–791.

Mostafa H S. 2021. Banana plant as a source of valuable antimicrobial compounds and its current applications in the food sector. Journal of Food Science86, 3778–3797.

Pound M P, Atkinson J A, Townsend A J, Wilson M H, Griffiths M, Jackson A S, Bulat A, Tzimiropoulos G, Wells D M, Murchie E H. 2017. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. Gigascience6, gix083.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L C. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, USA. pp. 4510–4520.

Santoso I, Warsito A, Prakoso T, Sofwan A, Zahra A, Christyono Y, Riyadi M. 2020. Non-periodic noisy signals denoising using adaptive neuro-fuzzy inference system (ANFIS). Journal of PhysicsConference Series1577, 012010.

Singh R, Athisayamani S. 2020. Banana leaf diseased image classification using novel HEAP auto encoder (HAE) deep learning. Multimedia Tools and Applications79, 30601–30613.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision And Pattern Recognition. IEEE, USA. pp. 2818–2826.

Tan M, Le Q. 2019. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning. Proceedings of Machine Learning Research. ACM, USA. pp. 6105–6114.

Wang F, Xu Z, Ni W, Chen J, Pan Z. 2022. An adaptive learning image denoising algorithm based on eigenvalue extraction and the GAN model. Computational Intelligence and Neuroscience2022, 5792767.

Wang H Y, Tian J, Meng G Y. 2018. Study on the adaptive wavelet threshold denoising method for coal mine hoisting wire rope signals based on novel thresholding function. Insight-Non-Destructive Testing and Condition Monitoring60, 99–103.

Wang M, Deng K, Gao L, Wang H, Li Z. 2021. Research on modified wavelet threshold denoising algorithm based around SEMG signal. Journal of PhysicsConference Series1880, 012004.

Wang S, Sun J, Mehmood I, Pan C, Chen Y, Zhang Y D. 2020. Cerebral micro-bleeding identification based on a nine-layer convolutional neural network with stochastic pooling. Concurrency and ComputationPractice and Experience32, e5130.

Xiao F, Yang D, Guo X, Wang Y. 2019. VMD-based denoising methods for surface electromyography signals. Journal of Neural Engineering16, 056017.

Xiao Y, Xiao X. 2019. An intrusion detection system based on a simplified residual network. Information10, 356.

Xie S, Girshick R, Dollár P, Tu Z, He K. 2017. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, USA. pp. 1492–1500.

Xu J, Zhang K, Xu M, Zhou Z. 2009. An adaptive threshold method for image denoising based on wavelet domain. In: MIPPR 2009Automatic Target Recognition and Image Analysis. International Society for Optics and Photonics, USA. pp. 1194–1200.

Yang F, Tian Y, Yang L, He J. 2011. Agricultural image de-noising algorithm based on hybrid wavelet transform. Transactions of the Chinese Society of Agricultural Engineering27, 172–178.

Yang H, Cheng Y, Li G. 2021. A denoising method for ship radiated noise based on Spearman variational mode decomposition, spatial-dependence recurrence sample entropy, improved wavelet threshold denoising, and Savitzky-Golay filter. Alexandria Engineering Journal60, 3379–3400.

Zhang D, Li P, Zhao L, Xu D, Lu D. 2021. Texture compensation with multi-scale dilated residual blocks for image denoising. Neural Computing and Applications33, 12957–12971.

Zhang H, Wu C, Zhang Z, Zhu Y, Lin H, Zhang Z, Sun Y, He T, Mueller J, Manmatha R. 2022. Resnest: Split-attention networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, USA. pp. 2736–2746.

Zhang Z, Deng C, Jin W, Peng L. 2022. Edge detection algorithm based on threshold function de-noising and wavelet neural network. In: Applied MathematicsModeling and Computer Simulation. IOS Press, the Netherlands. pp. 152–159.

Zhou C, Zhou S, Xing J, Song J. 2021. Tomato leaf disease identification by restructured deep residual dense network. IEEE Access9, 28822–28831.

Zoph B, Vasudevan V, Shlens J, Le Q V. 2018. Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE, USA. pp. 8697–8710.

No related articles found!
No Suggested Reading articles found!