Please wait a minute...
Journal of Integrative Agriculture  2024, Vol. 23 Issue (04): 1338-1353    DOI: 10.1016/j.jia.2023.09.022
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |

Membrane vesicles derived from Streptococcus suis serotype 2 induce cell pyroptosis in endothelial cells via the NLRP3/Caspase-1/GSDMD pathway

Keda Shi1, 2, 3*, Yan Li1, 2*, Minsheng Xu1, 2, 3, Kunli Zhang1, 2, Hongchao Gou1, 2, Chunling Li1, 2#, Shaolun Zhai1, 2#

1 Institute of Animal Health, Guangdong Academy of Agricultural Sciences/Key Laboratory of Livestock Disease Prevention of     Guangdong Province/Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong   Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China

2 Maoming Branch, Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Maoming 525000, China

3 College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

膜囊泡(membrane vesicles,MVs)可以主动分泌到细菌细胞外环境中,参与细菌和宿主的相互作用。大多数革兰氏阴性菌可以通过释放脂多糖(lipopolysaccharide,LPS)结合的外膜囊泡(out membrane vesicles,OMV),激活Caspase-11介导的非经典炎症通路,引起宿主细胞发生焦亡。然而,革兰氏阳性菌2型猪链球菌(Streptococcus suis serotype 2,S. suis 2)分泌的MVs引起细胞发生焦亡的机制尚不清楚。本研究利用超高速离心法、密度梯度离心、电子显微镜分析、蛋白质组学质谱鉴定、SDS-PAGE蛋白电泳和蛋白免疫印迹方法,分离、鉴定和表征MVs;利用荧光探针示踪分析、蛋白质印迹、荧光定量PCR和生物测定等方法,探究S. suis 2分泌的MVs与宿主的相互关系。研究结果显示,分离并鉴定S. suis 2来源的MVs大小范围在50 nm400 nm之间,平均直径为72.04 nm,具有膜结构。蛋白质组学质谱鉴定表明,MVs携带200种细菌蛋白质,其中包含6个已知的S. suis 2的毒力蛋白。MVs主要通过动力蛋白依赖的内吞作用被转运到内皮细胞中,并激活内皮细胞中的NLRP3/Caspase-1/GSDMD经典炎症小体信号通路,产生活化的Caspase-1并切割GSDMD,形成焦亡的执行者—GSDMD-N,诱导细胞发生焦亡,向细胞外释放活化的IL-1βLDH,但MVs不激活内皮细胞的Caspase-4/-5非经典通路。此外,内皮细胞在S. suis 2来源的MVs的诱导下产生大量活性氧(ROS)并导致线粒体失去膜电位引起线粒体DNAmtDNA)向胞质释放,胞质中ROSmtDNA的累积可能是激活NLRP3炎性小体的原因。本研究揭示了S. suis 2分泌的MVs通过动力蛋白依赖性内吞作用被内皮细胞内化,并可能通过损伤细胞线粒体诱导mtDNA、ROS的产生和释放,从而激活细胞NLRP3/Caspase-1/GSDMD经典通路,诱导内皮细胞发生焦亡。本研究首次揭示了S. suis 2通过分泌MVs激活内皮细胞NLRP3/Caspase-1/GSDMD经典通路,诱导内皮细胞发生焦亡的作用机制。



Abstract  Streptococcus suis serotype 2 (S. suis 2) is a zoonotic pathogen that clinically causes severe swine and human infections (such as meningitis, endocarditis, and septicemia).  In order to cause widespread diseases in different organs, S. suis 2 must colonize the host, break the blood barrier, and cause exaggerated inflammation.  In the last few years, most studies have focused on a single virulence factor and its influences on the host.  Membrane vesicles (MVs) can be actively secreted into the extracellular environment contributing to bacteria-host interactions.  Gram-negative bacteria-derived outer membrane vesicles (OMVs) were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide (LPS), causing host cell pyroptosis.  However, little is known about the effect of the MVs from S. suis 2 (Gram-positive bacteria without LPS) on cell pyroptosis.  Thus, we investigated the molecular mechanism by which S. suis 2 MVs participate in endothelial cell pyroptosis.  In this study, we used proteomics, electron scanning microscopy, fluorescence microscope, Western blotting, and bioassays, to investigate the MVs secreted by S. suis 2.  First, we demonstrated that S. suis 2 secreted MVs with an average diameter of 72.04 nm, and 200 proteins in MVs were identified.  Then, we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.  The S. suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway, resulting in cell pyroptosis, but it did not activate the Caspase-4/-5 pathway.  More importantly, endothelial cells produce large amounts of reactive oxygen species (ROS) and lost their mitochondrial membrane potential under induction by S. suis 2 MVs.  The results in this study suggest for the first time that MVs from S. suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage, which produced mtDNA and ROS  under induction, leading to the pyroptosis of endothelial cells.
Keywords:  Streptococcus suis serotype 2        membrane vesicles        endocytosis        pyroptosis        NLRP3 inflammasomes       mitochondrial damage        endothelial cell   
Received: 16 April 2023   Accepted: 09 November 2023
Fund: This project was supported by the National Natural Science Foundation of China (U22A20520), the Innovation Team Project of Modern Agricultural Industrial Technology System of Guangdong Province, China (2023KJ119) and the Natural Science Foundation Program of Guangdong Province, China (2023A1515012206).
About author:  Keda Shi, E-mail: Kedashi1994@163.com; Yan Li, E-mail: cyhlly@126.com; #Correspondence Chunling Li, E-mail: lclclare@163.com; Shaolun Zhai, E-mail: zhaishaolun@163.com * These authors contributed equally to this study.

Cite this article: 

Keda Shi, Yan Li, Minsheng Xu, Kunli Zhang, Hongchao Gou, Chunling Li, Shaolun Zhai. 2024.

Membrane vesicles derived from Streptococcus suis serotype 2 induce cell pyroptosis in endothelial cells via the NLRP3/Caspase-1/GSDMD pathway . Journal of Integrative Agriculture, 23(04): 1338-1353.

Baker P J, Boucher D, Bierschenk D, Tebartz C, Whitney P G, D’Silva D B, Tanzer M C, Monteleone M, Robertson A A B, Cooper M A, Alvarez-Diaz S, Herold M J, Bedoui S, Schroder K, Masters S L. 2015. Nlrp3 inflammasome activation downstream of cytoplasmic recognition by both Caspase-4 and Caspase-5. European Journal of Immunology, 45, 2918–2926.

Bielaszewska M, Ruter C, Bauwens A, Greune L, Jarosch K A, Steil D, Zhang W, He X, Lloubes R, Fruth A, Kim K S, Schmidt M A, Dobrindt U, Mellmann A, Karch H. 2017. Host cell interactions of outer membrane vesicle-associated virulence factors of enterohemorrhagic Escherichia coli O157: Intracellular delivery, trafficking and mechanisms of cell injury. PLoS Pathogens, 13, e1006159.

Bomberger J M, Maceachran D P, Coutermarsh B A, Ye S, O’Toole G A, Stanton B A. 2009. Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. Plos Pathogens, 5, e1000382.

Brassard J, Gottschalk M, Quessy S. 2004. Cloning and purification of the Streptococcus suis serotype 2 glyceraldehyde-3-phosphate dehydrogenase and its involvement as an adhesin. Veterinary Microbiology, 102, 87–94.

Brown L, Wolf J M, Prados-Rosales R, Casadevall A. 2015. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology, 13, 620–630.

Chen X, He W T, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J. 2016. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Research, 26, 1007–1020.

Cruz C M, Rinna A, Forman H J, Ventura A L M, Persechini P M, Ojcius D M. 2007. ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. Journal of Biological Chemistry, 282, 2871–2879.

Deatherage B L, Cookson B T. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infection and Immunity, 80, 1948–1957.

Deo P, Chow S H, Han M, Speir M, Huang C, Schittenhelm R B, Dhital S, Emery J, Li J, Kile B T, Vince J E, Lawlor K E, Naderer T. 2020. Mitochondrial dysfunction caused by outer membrane vesicles from gram-negative bacteria activates intrinsic apoptosis and inflammation. Nature Microbiology, 5, 1418–1427.

Dhital S, Deo P, Stuart I, Naderer T. 2021. Bacterial outer membrane vesicles and host cell death signaling. Trends in Microbiology, 29, 1106–1116.

Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman B T, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science, 320, 674–677.

Downs K P, Nguyen H, Dorfleutner A, Stehlik C. 2020. An overview of the non-canonical inflammasome. Molecular Aspects of Medicine, 76, 100924.

Elliott E I, Sutterwala F S. 2015. Initiation and perpetuation of Nlrp3 inflammasome activation and assembly. Immunological Reviews, 265, 35–52.

Fan H. 2017. Advances in pathogenesis of Streptococcus suis serotype 2. Journal of Integrative Agriculture, 16, 2834–2847.

Feng Y, Pan X, Sun W, Wang C, Zhang H, Li X, Ma Y, Shao Z, Ge J, Zheng F, Gao G F, Tang J. 2009. Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. The Journal of Infectious Diseases, 200, 1583–1592.

Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. 2014. Streptococcus suis infection: An emerging/reemerging challenge of bacterial infectious diseases? Virulence, 5, 477–497.

Fittipaldi N, Segura M, Grenier D, Gottschalk M. 2012. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiology, 7, 259–279.

Goyette-Desjardins G, Auger J, Xu J, Segura M, Gottschalk M. 2019. Streptococcus suis, an important pig pathogen and emerging zoonotic agent - An update on the worldwide distribution based on serotyping and sequence typing. Emerging Microbes & Infections, 3, 1–20.

Haas B, Grenier D. 2015. Isolation, characterization and biological properties of membrane vesicles produced by the swine pathogen Streptococcus suis. PLoS ONE, 10, e0130528.

He W, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang Z, Zhong C, Han J. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Research, 25, 1285–1298.

Hong J, Dauros-Singorenko P, Whitcombe A, Payne L, Blenkiron C, Phillips A, Swift S. 2019. Analysis of the Escherichia coli extracellular vesicle proteome identifies markers of purity and culture conditions. Journal of Extracellular Vesicles, 8, 1632099.

Huang Y, Xu W, Zhou R. 2021. NLRP3 inflammasome activation and cell death. Cellular & Molecular Immunology, 9, 2114–2127.

Jorgensen I, Miao E A. 2015. Pyroptotic cell death defends against intracellular pathogens. Immunological Reviews, 265, 130–142.

Jorgensen I, Rayamajhi M, Miao E A. 2017. Programmed cell death as a defence against infection. Nature Reviews Immunology, 17, 151–164.

Jung D W, Kim W H, Park S H, Lee J, Kim J, Su D, Ha H H, Chang Y T, Williams D R. 2013. A unique small molecule inhibitor of enolase clarifies its role in fundamental biological processes. ACS Chemical Biology, 8, 1271–1282.

Karmakar M, Minns M, Greenberg E N, Diaz-Aponte J, Pestonjamasp K, Johnson J L, Rathkey J K, Abbott D W, Wang K, Shao F, Catz S D, Dubyak G R, Pearlman E. 2020. N-GSDMD trafficking to neutrophil organelles facilitates IL-1β release independently of plasma membrane pores and pyroptosis. Nature Communications, 11, 2212.

Kayagaki N, Stowe I B, Lee B L, O’Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung Q T, Liu P S, Lill J R, Li H, Wu J, Kummerfeld S, Zhang J, Lee W P, Snipas S J, Salvesen G S, Morris L X, et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature, 526, 666–671.

Kelley N, Jeltema D, Duan Y, He Y. 2019. The Nlrp3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences, 20, 3328.

Kim J H, Lee J, Park J, Gho Y S. 2015. Gram-negative and gram-positive bacterial extracellular vesicles. Seminars in Cell & Developmental Biology, 40, 97–104.

Klimentova J, Pavkova I, Horcickova L, Bavlovic J, Kofronova O, Benada O,  Stulik J. 2019. Francisella tularensis subsp. holarctica releases differentially loaded outer membrane vesicles under various stress conditions. Frontiers in Microbiology, 10, 2304.

Klimentová J, Stulík J. 2015. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiological Research, 170, 1–9.

Knox K W, Vesk M, Work E. 1966. Relation between excreted lipopolysaccharide complexes and surface structures of a lysine-limited culture of Escherichia coli. Journal of Bacteriology, 92, 1206–1217.

Lee E, Choi D, Kim D, Kim J, Park J O, Kim S, Kim S, Desiderio D M, Kim Y, Kim K, Gho Y S. 2009. Gram-positive bacteria produce membrane vesicles: Proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics, 9, 5425–5436.

Lee J, Kim O Y, Gho Y. S. 2016. Proteomic profiling of Gram-negative bacterial outer membrane vesicles: Current perspectives. Proteomics Clinical Applications, 10, 897–909.

Lin Q, Li S, Jiang N, Shao X, Zhang M, Jin H, Zhang Z, Shen J, Zhou Y, Zhou W, Gu L, Lu R, Ni Z. 2019. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biology, 26, 101254.

Liu H, Lei S, Jia L, Xia X, Sun Y, Jiang H, Zhu R, Li S, Qu G, Gu J, Sun C, Feng X, Han W, Langford P R, Lei L. 2021. Streptococcus suis serotype 2 enolase interaction with host brain microvascular endothelial cells and RPSA-induced apoptosis lead to loss of BBB integrity. Veterinary Research, 52, 30.

Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. 2006. Dynasore, a cell-permeable inhibitor of dynamin. Developmental Cell, 10, 839–850.

Nolfi-Donegan D, Braganza A, Shiva S. 2020. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biology, 37, 101674.

Ren H, Yang H, Yang X, Zhang G, Rong X, Huang J, Zhang L, Fu Y, Allain J P, Li C, Wang W. 2021. Brucella outer membrane lipoproteins 19 and 16 differentially induce interleukin-18 response or pyroptosis in human monocytic cells. The Journal of Infectious Diseases, 224, 2148–2159.

Roy D, Takamatsu D, Okura M, Goyette-Desjardins G, Van Calsteren M, Dumesnil A, Gottschalk M, Segura M. 2018. Capsular sialyltransferase specificity mediates different phenotypes in Streptococcus suis and group B Streptococcus. Frontiers in Microbiology, 9, 545.

Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 526, 660–665.

Sun Y, Li N, Zhang J, Liu H, Liu J, Xia X, Sun C, Feng X, Gu J, Du C, 2016. Enolase of Streptococcus suis serotype 2 enhances blood–brain barrier permeability by inducing IL-8 release. Inflammation, 39, 718–726.

Swanson K V, Deng M, Ting J P. 2019. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology, 19, 477–489.

Thay B, Damm A, Kufer T A, Wai S N, Oscarsson J. 2014. Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1- and NOD2-dependent NF-κB activation. Infection and Immunity, 82, 4034–4046.

Toyofuku M, Cárcamo-Oyarce G, Yamamoto T, Eisenstein F, Hsiao C, Kurosawa M, Gademann K, Pilhofer M, Nomura N, Eberl L. 2017. Prophage-triggered membrane vesicle formation through peptidoglycan damage in Bacillus subtilis. Nature Communications, 8, 481.

Toyofuku M, Nomura N, Eberl L. 2019. Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 17, 13–24.

Toyofuku M, Zhou S, Sawada I, Takaya N, Uchiyama H, Nomura N. 2014. Membrane vesicle formation is associated with pyocin production under denitrifying conditions in Pseudomonas aeruginosa PAO1. Environmental Microbiology, 16, 2927–2938.

Vanaja S K, Russo A J, Behl B, Banerjee I, Yankova M, Deshmukh S D, Rathinam V A K. 2016. Bacterial outer membrane vesicles mediate cytosolic localization of LPS and Caspase-11 activation. Cell, 165, 1106–1119.

Wadia J S, Stan R V, Dowdy S F. 2004. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nature Medicine, 10, 310–315.

Wang C, Yang T, Xiao J, Xu C, Alippe Y, Sun K, Kanneganti T D, Monahan J B, Abu-Amer Y, Lieberman J. 2021. NLRP3 inflammasome activation triggers gasdermin D–independent inflammation. Science Immunology, 6, e3859.

Wang J, Kong D, Zhang S, Jiang H, Zheng Y, Zang Y, Hao H, Jiang Y. 2015. Interaction of fibrinogen and muramidase-released protein promotes the development of Streptococcus suis meningitis. Frontiers in Microbiology, 6, 1001.

Wang L H, Rothberg K G, Anderson R G. 1993. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. Journal of Cell Biology, 123, 1107–1117.

Wang X, Eagen W J, Lee J C. 2020. Orchestration of human macrophage Nlrp3 inflammasome activation by Staphylococcus aureus extracellular vesicles. Proceedings of the National Academy of Sciencesof the United States of America, 117, 3174–3184.

Wu T, Jia L, Lei S, Jiang H, Liu J, Li N, Langford P R, Liu H, Lei L. 2022. Host HSPD1 translocation from mitochondria to the cytoplasm induced by Streptococcus suis serovar 2 enolase mediates apoptosis and loss of blood–brain barrier integrity. Cells, 11, 2071.

Xia X, Qin W, Zhu H, Wang X, Jiang J, Hu J. 2019. How Streptococcus suis serotype 2 attempts to avoid attack by host immune defenses. Journal of Microbiology, Immunology and Infection, 52, 516–525.

Xu L, Huang B, Du H, Zhang X C, Xu J, Li X, Rao Z. 2010. Crystal structure of cytotoxin protein Suilysin from Streptococcus suis. Protein & Cell, 1, 96–105.

Xue Y, Tuipulotu D E, Tan W H, Kay C, Man S M. 2019. Emerging activators and regulators of inflammasomes and pyroptosis. Trends in Immunology, 40, 1035–1052.


No related articles found!
No Suggested Reading articles found!