Please wait a minute...
Journal of Integrative Agriculture  2025, Vol. 24 Issue (4): 1285-1295    DOI: 10.1016/j.jia.2023.06.037
Section 3: Diet components and feed additives Advanced Online Publication | Current Issue | Archive | Adv Search |
Dietary fat supplement affected energy and nitrogen metabolism efficiency and shifted rumen fermentation toward glucogenic propionate production via enrichment of Succiniclasticum in male twin lambs

Wenjuan Li1, Tao Ma1, Naifeng Zhang1, Kaidong Deng2, Qiyu Diao1#

1 Key Laboratory of Feed Biotechnology of the Ministry of Agricultural and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China

2 College of Animal Science, Jinling Institute of Technology, Nanjing 210038, China

 Highlights 
High-throughput sequencing showed that pre-weaning fat addition led to an increase in Proteobacteria phyla and Succinivibrio genera.
The same fat addition decreased the relative abundance of Clostridium IV, Dialister, Roseburia, Acidaminococcus, and Megasphaera genera.
Findings suggest that a high-fat diet may enhance body weight, energy, and nitrogen utilization by promoting rumen propionate fermentation through Succinivibrio enrichment.
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

本研究旨在探讨日粮脂肪对双胞胎哺乳羔羊能量和氮代谢效率、瘤胃发酵和微生物菌群的影响。随机将30对双胞胎公羔分为两组,一组饲喂高脂日粮HF),另一组饲喂普通脂肪日粮NF),两种日粮(包含代乳品和开食料)的蛋白含量一致,但脂肪含量不同。在羔羊50-60日龄时进行消化代谢试验,并60日龄按平均体重随机选择9对双胞胎羔羊屠宰并采集瘤胃液。结果表明,日粮添加脂肪可提高羔羊终末体重(BW)、瘤胃液中氨态氮(NH3-N)含量、丙酸比例及甲烷预测量CH4e)(P < 0.05)。高脂日粮有增强(0.05 < P < 0.1)消化能(DE)、代谢能(ME)、DE/ME和氮利用率的潜力。然而,微生物粗蛋白(MCP)含量、总挥发酸含量(VFA)、乙酸比例和乙酸/丙酸(A:P)比值低于NF组(P < 0.05)。而添加脂肪不影响羔羊血清代谢物。高通量测序显示,断奶前添加脂肪增加变形菌门和琥珀酸弧菌属的相对丰度,降低了梭菌属IV、戴阿利斯特杆菌属、罗氏菌属、氨基酸球菌属和巨单孢菌属的相对丰度。这些发现表明,高脂日粮通过富集琥珀酸弧菌属,瘤胃发酵向丙酸型发酵转变,有改善体重、能量和氮的利用率的潜力。



Abstract  


The aim of this study was to investigate the effects of dietary fat on energy and nitrogen (N) metabolism efficiency, rumen fermentation, and microbiota in twin suckling lambs.  Thirty pairs of twin male lambs were randomly divided into two groups with one group receiving a high-fat diet (HF) and the other a normal-fat diet (NF).  Two diets (milk replacer and starter) of equal protein and different fat levels.  The metabolism test was conducted when the lambs were 50–60 days old, and nine pairs of twin lambs were randomly selected for slaughter to collect rumen fluid at 60 days old.  The result showed that fat addition increased the final body weight (BW), ruminal ammonia nitrogen (NH3-N) content, proportion of propionic acid, and estimated methane production (CH4e) (P<0.05).  The high fat diet tended to improve digestive energy (DE), metabolism energy (ME), DE/ME, utilisation of N (0.05<P<0.1).  However, microbial crude protein (MCP) content, total volatile fatty acids (VFA), acetic acid ratio, and the ratio of acetate to propionate (A:P) were lower than that in the NF group (P<0.05).  Regardless of whether fat is added or not, no different were observed in blood metabolites between the treatment.  High-throughput sequencing revealed that fat addition before weaning increased phyla Proteobacteria and genera of Succinivibrio, but decreased the relative abundance of Clostridium IV, Dialister, Roseburia, Acidaminococcus, and Megasphaera genera.  These findings indicated that high fat diet improved body weight, energy and nitrogen utilization may by shifting the rumen toward propionate fermentation via the enrichment of Succinivibrio.


Keywords:  twin lambs        fat        rumen fermentation        microbiota  
Received: 09 April 2023   Accepted: 02 June 2023
Fund: This work was supported by China Agriculture Research System of MOF and MARA (CARS-38).
About author:  Wenjuan Li, E-mail: liwjuan1226@163.com; #Correspondence Qiyu Diao, E-mail: diaoqiyu@caas.cn

Cite this article: 

Wenjuan Li, Tao Ma, Naifeng Zhang, Kaidong Deng, Qiyu Diao. 2025. Dietary fat supplement affected energy and nitrogen metabolism efficiency and shifted rumen fermentation toward glucogenic propionate production via enrichment of Succiniclasticum in male twin lambs. Journal of Integrative Agriculture, 24(4): 1285-1295.

AOAC (Association of Official Analytical Chemists). 2006. Official Methods of Analysis of AOAC INTERNATIONAL. 18th ed. Association of Official Analytical Chemists. pp. 146–174.

Badoer E, Kosari S, Stebbing M J. Resistin. 2015. An adipokine with non-generalized actions on sympathetic nerve activity. Frontiers in Physiology6, 321.

Bahramkhani-Zaringoli L, Mirzaei-Alamouti H, Aschenbach J R, Vazirigohar M, Patra A K, Jafari-Anarkooli I, Ganjkhanlou M, Alipour D, Mansouryar M. 2022. Effects of oil supplements on growth performance, eating behavior, ruminal fermentation, and ruminal morphology in lambs during transition from a low- to a high-grain diet. Animals (Basel), 12, 2566.

Bergman E N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews70, 567–590.

Bhatt R S, Soren N M, Tripathi M K, Karim S A. 2011. Effects of different levels of coconut oil supplementation on performance, digestibility, rumen fermentation and carcass traits of Malpura lambs. Animal Feed Science and Technology164, 29–37.

Bionaz M, Vargas-Bello-Pérez E, Busato S. 2020. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. Journal of Animal Science and Biotechnology11, 110.

Bremner J M, Keeney D R. 1965. Steam distillation methods for determination of ammonium nitrate and nitrite. Analytica Chimica Acta32, 485–495.

Brokaw L, Hess B W, Rule D C. 2001. Supplemental soybean oil or corn for beef heifers grazing summer pasture: Effects on forage intake, ruminal fermentation, and site and extent of digestion. Journal of Animal Science79, 2704–2712.

Candyrine S C L, Jahromi M F, Ebrahimi M, Chen W L, Rezaei S, Goh Y M, Abdullah N, Liang J B. 2019. Oil supplementation improved growth and diet digestibility in goats and sheep fed fattening diet. Asian–Australasian Journal of Animal Sciences32, 533–540.

Chanjula P, So S, Suntara C, Prachumchai R, Cherdthong A. 2022. Efficiency of feed utilization, ruminal traits, and blood parameters of goats given a total mixed diet ration containing extracted oil palm meal. Veterinary Sciences, 9, 612.

Chilliard Y. 1993. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents: A review. Journal of Dairy Science, 763897–3931.

Clemmons B A, Powers J B, Campagna S R, Seay T B, Embree M M, Myer P R. 2020. Rumen fluid metabolomics of beef steers differing in feed efficiency. Metabolomics16, 23.

Dai X, Weimer P J, Dill-McFarland K A, Brandao V L N, Suen G, Faciola A P. 2017. camelina seed supplementation at two dietary fat levels change ruminal bacterial community composition in a dual-flow continuous culture system. Frontiers in Microbiology8, 2147.

Diao Q, Tu Y. 2007. A milk replacer for calf and lamb. Chinese Patent. Publication No. ZL02128844.5. State Intellectual Property Office of China. (in Chinese)

Ding X, Long R, Zhang Q, Huang X, Guo X, Mi J. 2012. Reducing methane emissions and the methanogen population in the rumen of Tibetan sheep by dietary supplementation with coconut oil. Tropical Animal Health and Production441541–1545.

Drehmel O R, Brown-Brandl T M, Judy J V, Fernando S C, Miller P S, Hales K E, Kononoff P J. 2018. The influence of fat and hemicellulose on methane production and energy utilization in lactating Jersey cattle. Journal of Dairy Science101, 7892–7906.

Eckert E, Brown H E, Leslie K E, DeVries T J, Steele M A. 2015. Weaning age affects growth, feed intake, gastrointestinal development, and behavior in Holstein calves fed an elevated plane of nutrition during the preweaning stage. Journal of Dairy Science98, 6315–6326.

Euzéby J P. 1997. List of bacterial names with standing in nomenclature: a folder available on the internet. International Journal of Systematic and Evolutionary Microbiology47, 590–592.

Faciola A P, Broderick G A. 2014. Effects of feeding lauric acid or coconut oil on ruminal protozoa numbers, fermentation pattern, digestion, omasal nutrient flow, and milk production in dairy cows. Journal of Dairy Science97, 5088–5100.

Fortina R, Glorio Patrucco S, Barbera S, Tassone S. 2022. Rumen fluid from slaughtered animals: A standardized procedure for sampling, storage and use in digestibility trials. Methods and Protocols5, 59.

Freier T A, Beitz D C, Li L, Hartman P A. 1994. Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe. International Journal of Systematic Bacteriology44, 137–142.

Guo P, Zhang K, Ma X, He P. 2020. Clostridium species as probiotics: Potentials and challenges. Journal of Animal Science and Biotechnology11, 24.

Granja-Salcedo Y T, Fernandes R M, de Araujo R C, Kishi L T, Berchielli T T, de Resende F D, Berndt A, Siqueira G R. 2019. Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Frontiers in Microbiology, 10, 614.

Van Gylswyk N O. 1995. Succiniclasticum ruminis gen. nov., sp. nov., a ruminal bacterium converting succinate to propionate as the sole energy-yielding mechanism. International Journal of Systematic Bacteriology45, 297–300.

Hassanat F, Benchaar C. 2021. Corn silage-based diet supplemented with increasing amounts of linseed oil: Effects on methane production, rumen fermentation, nutrient digestibility, nitrogen utilization, and milk production of dairy cows. Journal of Dairy Science104, 5375–5390.

Havlin J M, Robinson P H, Karges K. 2015. Impacts of dietary fat level and saturation when feeding distillers grains to high producing dairy cows. Journal of Animal Physiology and Animal Nutrition99, 577.

Hayashi Y, Saito T, Ohshima T, Nakagawa Y, Arita T, Yashima A, Makino T, Konnai R, Gomi K, Arai T, Maeda N. 2014. Terminal RFLP analysis to determine the oral microbiota with hyposalivation. Archives of Microbiology196, 489–496.

Hildebrandt M A, Hoffmann C, Sherrill-Mix S A, Keilbaugh S A, Hamady M, Chen Y Y, Knight R, Ahima R S, Bushman F, Wu G D. 2009. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology137, 1716–1724.

Hollmann M, Powers W J, Fogiel A C, Liesman J S, Beede D K. 2013. Response profiles of enteric methane emissions and lactational performance during habituation to dietary coconut oil in dairy cows. Journal of Dairy Science96, 1769–1781.

Hu F, Piao M, Yang C, Diao Q, Tu Y. 2023. Effects of coconut oil and palm oil on growth, rumen microbiota, and fatty acid profile of suckling calves. Microorganisms11655.

Jin H, Zhang C. 2020. High fat high calories diet (HFD) increase gut susceptibility to carcinogens by altering the gut microbial community. Journal of Cancer11, 4091–4098.

Jouany J P. 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. Journal of Nutrition126, 1335S–1346S.

Kaewpila C, Sommart K, Mitsumori M. 2018. Dietary fat sources affect feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different beef cattle genotypes. Animal12, 2529–2538.

Kazala E C, Petrak J L, Lozeman F J, Mir P S, André Laroche, Deng J T, Weselake R J. 2003. Hormone-sensitive lipase activity in relation to fat content of muscle in Wagyu hybrid cattle. Livestock Production Science79, 87–96.

Kholif A E, Morsy T A, Abdo M M. 2018. Crushed flaxseed versus flaxseed oil in the diets of Nubian goats: Effect on feed intake, digestion, ruminal fermentation, blood chemistry, milk production, milk composition and milk fatty acid profile. Animal Feed Science and Technology244, 66–75.

Li J, Tang C, Yang Y, Hu Y, Zhao Q, Ma Q, Yue X, Li F, Zhang J. 2023. Characterization of meat quality traits, fatty acids and volatile compounds in Hu and Tan sheep. Frontiers in Nutrition10, 1072159.

Liu J H, Bian G R, Zhu W Y, Mao S Y. 2015. High-grain feeding causes strong shifts in ruminal epithelial bacterial community and expression of Toll-like receptor genes in goats. Frontiers in Microbiology, 6, 167.

Liu L, Zhu Y, Li J, Wang M, Lee P, Du G, Chen J. 2012. Microbial production of propionic acid from propionibacteria: Current state, challenges and perspectives. Critical Reviews in Biotechnology32, 74–81.

Lu H, Guo T, Fan Y, Deng Z, Luo T, Li H. 2020. Effects of diacylglycerol and triacylglycerol from peanut oil and coconut oil on lipid metabolism in mice. Journal of Food Science and Technology851907–1914.

Maia M R, Chaudhary L C, Figueres L, Wallace R J. 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek91, 303–314.

Maia M R, Chaudhary L C, Bestwick C S, Richardson A J, McKain N, Larson T R, Graham I A, Wallace R J. 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvensBMC Microbiol10, 52.

McLoughlin S, Spillane C, Claffey N, Smith P E, O’Rourke T, Diskin M G, Waters S M. 2020. Rumen microbiome composition is altered in sheep divergent in feed efficiency. Frontiers in Microbiology11, 1981.

Moss A R, Jouany J P, Newbold J. 2000. Methane production by ruminants: Its contribution to global warming. Annales de Zootechnie49, 231–253.

Niu W, He Y, Xia C, Ur Rahman M A, Qiu Q, Shao T, Liang Y, Ji L, Wang H, Cao B. 2017. Effects of replacing Leymus chinensis with whole-crop wheat hay on Holstein bull apparent digestibility, plasma parameters, rumen fermentation, and microbiota. Scientific Reports7, 2114.

NY/T 2999-2016. 1999. Lamb/kid milk replace. Agricultural Industry Standard of the People's Republic of China. (in Chinese)

Oliveira R, Faria M, Silva R, Bezerra L, Carvalho G, Pinheiro A, Simionato J, Leão A. 2015. Fatty acid profile of milk and cheese from dairy cows supplemented a diet with palm kernel cake. Molecules20, 15434–15448.

Pantophlet A J, Gerrits W J J, Vonk R J, van den Borne J J G C. 2016. Substantial replacement of lactose with fat in a high-lactose milk replacer diet increases liver fat accumulation but does not affect insulin sensitivity in veal calves. Journal of Dairy Science, 9910022–10032.

Patra A K, Yu Z T. 2012. Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology78, 4271–4280.

Pérez J F, Balcells J, Cebrián J A, Martín-Orúe S M. 1998. Excretion of endogenous and exogenous purine derivatives in sheep: Effect of increased concentrate intake. British Journal of Nutrition79, 237–240.

Pi Y, Ma L, Pierce K M, Wang H R, Xu J C, Bu D P. 2019. Rubber seed oil and flaxseed oil supplementation alter digestion, ruminal fermentation and rumen fatty acid profile of dairy cows. Animal13, 2811–2820.

Picó C, Palou M, Pomar CA, Rodríguez AM, Palou A. 2022. Leptin as a key regulator of the adipose organ. Reviews in Endocrine and Metabolic Disorders23, 13–30.

Raeth-Knight M, Chester-Jones H, Hayes S, Linn J, Larson R, Ziegler D, Ziegler B, Broadwater N. 2009. Impact of conventional or intensive milk replacer programs on Holstein heifer performance through six months of age and during first lactation. Journal of Dairy Science92, 799–809.

Ramos-Nieves J M, Giesy S L, McGuckin M M, Boisclair Y R. 2020. Effects of birth weight and dietary fat on intake, body composition, and plasma thyroxine in neonatal lambs. Journal of Animal Science, 98, skaa364.

Sadet S, Martin C, Meunier B, Morgavi D P. 2017. PCR-DGGE analysis reveals a distinct diversity in the bacterial population attached to the rumen epithelium. Animal1, 939–944.

Dos Santos N J A, Bezerra L R, Castro D P V, Marcelino P D R, de Andrade E A, Virgínio Júnior G F, da Silva Júnior J M, Pereira E S, Barbosa A M, Oliveira R L. 2022. Performance, digestibility, nitrogen balance and ingestive behavior of young feedlot bulls supplemented with palm kernel oil. Animals (Basel), 12, 429.

Shaver R D. 1990. Fat sources for high producing dairy cows. In: 51st Minnesota Nutrition Conference, Proceedings. University of Minnesota, Dept. of Animal Science and Minnesota Extension Service. Bloomington, MN. pp. 13–42.

Shen H, Chen Z, Shen Z, Lu Z. 2017. Maintaining stability of the rumen ecosystem is associated with changes of microbial composition and epithelial TLR signaling. Microbiologyopen6, e00436.

Simpson H L, Campbell B J. 2015. Review article: Dietary fibre-microbiota interactions. Alimentary Pharmacology and Therapeutics42, 158–179.

Van Soest P J, Robertson J B, Lewis B A. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science74, 3583–3597.

Stevenson D M, Weimer P J. 2007. Dominance of Prevotella, and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Applied Microbiology and Biotechnology75, 165–174.

Veneman J B, Muetzel S, Hart K J, Faulkner C L, Moorby J M, Perdok H B, Newbold C J. 2015. Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows? PLoS ONE10, e0140282.

Wanderley A M, Ítavo L C V, Dos Santos G T, Ítavo C C B F, Cunha C S, Dos Santos Difante G, Dias A M, Mateus R G, de Oliveira M V M. 2021. Ruminal degradation kinetics of diets with different lipid sources and its influence on intake and milk yield of early lactation crossbred Holstein×Gir cows. Tropical Animal Health and Production53, 516.

Wang Q, Wang Y, Hussain T, Dai C, Li J, Huang P, Li Y, Ding X, Huang J, Ji F, Zhou H, Yang H. 2020. Effects of dietary energy level on growth performance, blood parameters and meat quality in fattening male Hu lambs. Journal of Animal Physiology and Animal Nutrition104, 418–430.

Wang W, Li C, Li F, Wang X, Zhang X, Liu T, Nian F, Yue X, Li F, Pan X, La Y, Mo F, Wang F, Li B. 2016. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs. Scientific Reports6, 32479.

Wang W, Wang Y, Cui Z, Yang Y, An X, Qi J. 2022. Fermented wheat bran polysaccharides intervention alters rumen bacterial community and promotes rumen development and growth performance in lambs. Frontiers in Veterinary Science9, 841406.

Wetzels S U, Mann E, Metzler-Zebeli B U, Pourazad P, Qumar M, Klevenhusen F, Pinior B, Wagner M, Zebeli Q, Schmitz-Esser S. 2016. Epimural Indicator phylotypes of transiently-induced subacute ruminal acidosis in dairy cattle. Frontiers in Microbiology7, 274.

Wetzels S U, Mann E, Metzler-Zebeli B U, Wagner M, Klevenhusen F, Zebeli Q, Schmitz-Esser S. 2015. Pyrosequencing reveals shifts in the bacterial epimural community relative to dietary concentrate amount in goats. Journal of Dairy Science98, 5572–5587.

Xie X, Wang J K, Guan L L, Liu J X. 2018. Effect of changing forage on the dynamic variation in rumen fermentation in sheep. Journal of Animal Science89, 122–131.

Zhang H, Dong X, Wang Z, Zhou A, Peng Q, Zou H, Xue B, Wang L. 2016. Dietary conjugated linoleic acids increase intramuscular fat deposition and decrease subcutaneous fat deposition in Yellow Breed×Simmental cattle. Journal of Animal Science87, 517–524.

No related articles found!
No Suggested Reading articles found!