Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (5): 1546-1559    DOI: 10.1016/j.jia.2022.12.011
Agro-ecosystem & Environment Advanced Online Publication | Current Issue | Archive | Adv Search |
Inversion tillage with straw incorporation affects the patterns of soil microbial co-occurrence and multi-nutrient cycling in a Hapli-Udic Cambisol
CHEN Xu1, HAN Xiao-zeng1, WANG Xiao-hui2, GUO Zhen-xi3, YAN Jun1, LU Xin-chun1, ZOU Wen-xiu1#
1 Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, P.R.China  2 Agricultural Technology Extension Center of Wafangdian City, Wafangdian 116300, P.R.China  3 Modern Agricultural Development Service Center of Tieling County, Tieling 112600, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  深翻秸秆还田在我国东北地区已得到了广泛的应用,可以显著增加土壤有机碳储量,改善底层土壤养分循环功能。土壤微生物普遍被认为是这一过程的关键,但其在深层土壤改良中的作用仍研究有限。本研究于2018年开始,以东北地区棕壤为研究对象,以常规耕作(CT,翻耕深度15 cm)为对照,分析了秸秆浅混还田(SCT,翻耕深度15 cm)、深翻处理(IT,翻耕深度35 cm)和深翻秸秆还田(SIT,翻耕深度35 cm)对土壤微生物群落网络和多养分循环功能的影响。结果表明,深翻秸秆还田改善了土壤多养分循环指数,提高了表层和底层土壤有机碳、全氮、有效氮、有效磷和有效钾等养分含量。与传统耕作和秸秆浅混还田相比,深翻秸秆还田通过减少微生物网络平均连通度和节点数,增加平均路径长度和模块化程度,创造了一个结构相对松散但具有高集中度集群的网络结构。同时随机森林分析发现,平均路径长度和聚类系数是影响土壤多养分循环功能的主要因素。综上深翻秸秆还田将是改善棕壤养分循环和微生物群落结构的一个有效措施,以上结果也为该地区关于微生物驱动秸秆分解策略提供了重要信息。

Abstract  Inversion tillage with straw amendment is widely applied in northeastern China, and it can substantially increase the storage of carbon and improve multiple subsoil functions. Soil microorganisms are believed to be the key to this process, but research into their role in subsoil amelioration is limited. Therefore, a field experiment was conducted in 2018 in a region in northeastern China with Hapli-Udic Cambisol using four treatments: conventional tillage (CT, tillage to a depth of 15 cm with no straw incorporation), straw incorporation with conventional tillage (SCT, tillage to a depth of 15 cm), inversion tillage (IT, tillage to a depth of 35 cm) and straw incorporation with inversion tillage (SIT, tillage to a depth of 35 cm). The soils were managed by inversion to a depth of 15 or 35 cm every year after harvest. The results indicated that SIT improved soil multi-nutrient cycling variables and increased the availability of key nutrients such as soil organic carbon, total nitrogen, available nitrogen, available phosphorus and available potassium in both the topsoil and subsoil. In contrast to CT and SCT, SIT created a looser microbial network structure but with highly centralized clusters by reducing the topological properties of average connectivity and node number, and by increasing the average path length and the modularity. A Random Forest analysis found that the average path length and the clustering coefficient were the main determinants of soil multi-nutrient cycling. These findings suggested that SIT can be an effective option for improving soil multi-nutrient cycling and the structure of microbial networks, and they provide crucial information about the microbial strategies that drive the decomposition of straw in Hapli-Udic Cambisol.
Keywords:  soil microbiome       microbial co-occurrence networks        straw amendment        soil nutrient  
Received: 13 July 2022   Accepted: 10 November 2022
Fund: The study was funded by the National Key Research and Development Program of China (2022YFD1500100), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28070100), the National Natural Science Foundation of China (41807085) and the earmarked fund for China Agriculture Research System (CARS04).
About author:  CHEN Xu, E-mail:; #Correspondence ZOU Wen-xiu, Tel: +86-451-86601048, E-mail:

Cite this article: 

CHEN Xu, HAN Xiao-zeng, WANG Xiao-hui, GUO Zhen-xi, YAN Jun, LU Xin-chun, ZOU Wen-xiu. 2023. Inversion tillage with straw incorporation affects the patterns of soil microbial co-occurrence and multi-nutrient cycling in a Hapli-Udic Cambisol. Journal of Integrative Agriculture, 22(5): 1546-1559.

Alcantara V, Don A, Well R, Nieder R. 2016. Deep ploughing increases agricultural soil organic matter stocks. Global Change Biology22, 2939–2956.

Angers D A, Eriksen-Hamel N S. 2008. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis. Soil Science Society of America Journal72, 1370–1374.

Ballhausen M, de Boer W. 2016. The sapro-rhizosphere: Carbon flow from saprotrophic fungi into fungus-feeding bacteria. Soil Biology & Biochemistry102, 14–17.

Banerjee S, Walder F, Buchi L, Meyer M, Held A Y, Gattinger A, Keller T, Charles R, van der Heijden M. 2019. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. The ISME Journal13, 1722–1736.

Barabasi A L, Oltvai Z N. 2004. Network biology: Understanding the cell’s functional organization. Nature Reviews Genetics5, 101–113.

Boer W D, Folman L B, Summerbell R C, Boddy L. 2005. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews29, 795–811.

Breiman L. 2001. Random forests. Machine Learning45, 5–32.

Bremner J M, Keeney D R. 1965. Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Acta32, 485–495.

de Boer W, Folman L B, Summerbell R C, Boddy L. 2005. Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiology Reviews29, 795–811.

Carr A, Diener C, Baliga N S, Gibbons S M. 2019. Use and abuse of correlation analyses in microbial ecology. The ISME Journal13, 2647–2655.

Chaffron S, Rehrauer H, Pernthaler J, von Mering C. 2010. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Research20, 947–959.

Chen L, Jiang Y, Liang C, Luo Y, Xu Q, Han C, Zhao Q, Sun B. 2019. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome7, 77.

Choudhury S G, Srivastava S, Singh R, Chaudhari S K, Sharma D K, Singh S K, Sarkar D. 2014. Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil. Soil & Tillage Research136, 76–83.

Creamer R E, Hannula S E, Van Leeuwen J P, Stone D, Rutgers M, Schmelz R M, de Ruiter P C, Heniksen N B, Bolger T, Bouffaud M L, Buee M, Carvalho F, Costa D, Dirilgen T, Francisco R, Griffiths B S, Griffiths R, Martin F, Silva P M D, Mendes S, et al. 2016. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Applied Soil Ecology97, 112–124.

Cremer J, Melbinger A, Wienand K, Henriquez T, Jung H, Frey E. 2019. Cooperation in microbial populations: Theory and experimental model systems. Journal of Molecular Biology431, 4599–4644.

Delgado-Baquerizo M, Maestre F T, Reich P B, Jeffries T C, Gaitan J J, Encinar D, Berdugo M, Campbell C D, Singh B K. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communication7, 10541.

Dimassi B, Cohan J, Labreuche J, Mary B. 2013. Changes in soil carbon and nitrogen following tillage conversion in a long-term experiment in northern France. AgricultureEcosystems & Environment169, 12–20.

Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu Y G, Chu H. 2021. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment. The ISME Journal15, 550–561.

Fanin N, Gundale M J, Farrell M, Ciobanu M, Baldock J A, Nilsson M C, Kardol P, Wardle D A. 2018. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems. Nature Ecology & Evolution2, 269–278.

Fath B D, Scharler U M, Ulanowicz R E, Hannon B. 2007. Ecological network analysis: Network construction. Ecological Modelling208, 49–55.

Feiziene D, Feiza V, Karklins A, Versuliene A, Janusauskaite D, Antanaitis S. 2018. After-effects of long-term tillage and residue management on topsoil state in boreal conditions. European Journal of Agronomy94, 12–24.

Freilich S, Kreimer A, Meilijson I, Gophna U, Sharan R, Ruppin E. 2010. The large-scale organization of the bacterial network of ecological co-occurrence interactions. Nucleic Acids Research38, 3857–3868.

Ghannoum M A, Jurevic R J, Mukherjee P K, Cui F, Sikaroodi M, Naqvi A, Gillevet P M. 2010. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathogens6, e1000713.

van der Heijden M G, Bardgett R D, van Straalen N M. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecology Letters11, 296–310.

Hernandez D J, David A S, Menges E S, Searcy C A, Afkhami M E. 2021. Environmental stress destabilizes microbial networks. The ISME Journal15, 1722–1734.

Herren C M, Mcmahon K D. 2018. Keystone taxa predict compositional change in microbial communities. Environmental Microbiology20, 2207–2217.

ISSS (International Society of Soil Science). 1930. Rules of the International Society of Soil Science. ISSS, Leningrad.

Jackson M L. 1973. Soil Chemical Analysis. Prentice Hall Inc., India. pp. 281–285.

Jiang Y, Li S, Li R, Zhang J, Liu Y, Lv L, Zhu H, Wu W, Li W. 2017. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biology & Biochemistry109, 145–155.

Jiao S, Chen W, Wang J, Du N, Li Q, Wei G. 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome6, 146.

Jobbagy E G, Jackson R B. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications10, 423–436.

Karimi B, Dequiedt S, Terrat S, Jolivet C, Arrouays D, Wincker P, Cruaud C, Bispo A, Chemidlin P N, Ranjard L. 2019. Biogeography of soil bacterial networks along a gradient of cropping intensity. Scientific Reports9, 3812.

Liu N, Li Y, Cong P, Wang J, Guo W, Pang H, Zhang L. 2021. Depth of straw incorporation significantly alters crop yield, soil organic carbon and total nitrogen in the North China Plain. Soil & Tillage Research205, 104772.

Lu R K. 2000. Analytical Methods of Soil Agricultural Chemistry. China Agricultural Science and Technology Press, Beijing, China. pp. 56–57. (in Chinese)

Ma B, Lv X, Cai Y, Chang S X, Dyck M F. 2018. Liming does not counteract the influence of long-term fertilization on soil bacterial community structure and its co-occurrence pattern. Soil Biology & Biochemistry123, 45–53.

Ma B, Wang H, Dsouza M, Lou J, He Y, Dai Z, Brookes P C, Xu J, Gilbert J A. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern china. The ISME Journal10, 1891–1901.

Marschner P, Umar S, Baumann K. 2011. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biology Biochemistry43, 445–451.

Neilson J W, Quade J, Ortiz M, Nelson W M, Legatzki A, Tian F, Lacomb M, Betancourt J L, Wing R A, Soderlund C A, Maier R M. 2012. Life at the hyperarid margin: Novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles16, 553–566.

Pansu M, Gautheyrou J. 2006. Handbook of Soil Analysis: Mineralogical: Organic and Inorganic Methods. Vol. 993. Springer-Verlag, Heidelberg.

Ren H, Huang B, Fernandez-Garcia V, Miesel J, Yan L, Lv C. 2020. Biochar and rhizobacteria amendments improve several soil properties and bacterial diversity. Microorganisms8, 502.

Samson M, Chantigny M H, Vanasse A, Menasseri-Aubry S, Royer I, Angers D A. 2021. Response of subsurface C and N stocks dominates the whole-soil profile response to agricultural management practices in a cool, humid climate. AgricultureEcosystems & Environment320, 107590.

Sanaullah M, Chabbi A, Maron P, Baumann K, Tardy V, Blagodatskaya E, Kuzyakov Y, Rumpel C. 2016. How do microbial communities in top- and subsoil respond to root litter addition under field conditions? Soil Biology & Biochemistry103, 28–38.

Schimel J P, Schaeffer S M. 2012. Microbial control over carbon cycling in soil. Front Microbiology3, 348.

Schjønning P, Thomsen I K. 2013. Shallow tillage effects on soil properties for temperate-region hard-setting soils. Soil & Tillage Research132, 12–20.

Shi Y, Delgado-Baquerizo M, Li Y, Yang Y, Zhu Y G, Penuelas J, Chu H. 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environment International142, 105869.

Steinmann T, Welp G, Wolf A, Holbeck B, Große-Rüschkamp T, Amelung W. 2016. Repeated monitoring of organic carbon stocks after eight years reveals carbon losses from intensively managed agricultural soils in western Germany. Journal of Plant Nutrition and Soil Science179, 355–366.

Tardy V, Chabbi A, Charrier X, de Berranger C, Reignier T, Dequiedt S, Faivre-Primot C, Terrat S, Ranjard L, Maron P A. 2015. Land use history shifts in situ fungal and bacterial successions following wheat straw input into the soil. PLoS ONE10, e130672.

Vos C, Don A, Hobley E U, Prietz R, Heidkamp A, Freibauer A. 2019. Factors controlling the variation in organic carbon stocks in agricultural soils of Germany. European Journal of Soil Science70, 550–564.

Wagg C, Bender S F, Widmer F, van der Heijden M G. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences of the United States of America111, 5266–5270.

Wood S A, Gilbert J A, Leff J W, Fierer N, D’Angelo H, Bateman C, Gedallovich S M, Gillikin C M, Gradoville M R, Mansor P, Massmann A, Yang N, Turner B L, Brearley F Q, Mcguire K L. 2017. Consequences of tropical forest conversion to oil palm on soil bacterial community and network structure. Soil Biology & Biochemistry112, 258–268.

Xue P, Minasny B, Mcbratney A B. 2022. Land-use affects soil microbial co-occurrence networks and their putative functions. Applied Soil Ecology169, 104184.

Ye Z, Li J, Wang J, Zhang C, Liu G, Dong Q G. 2021. Diversity and co-occurrence network modularization of bacterial communities determine soil fertility and crop yields in arid fertigation agroecosystems. Biology and Fertility of Soils57, 809–824.

Yuan J, Wen T, Zhang H, Zhao M, Penton C R, Thomashow L S, Shen Q. 2020. Predicting disease occurrence with high accuracy based on soil macroecological patterns of fusarium wilt. The ISME Journal14, 2936–2950.

Yuan M M, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje J M, Zhou J. 2021. Climate warming enhances microbial network complexity and stability. Nature Climate Change11, 343–348.

Yusoff M Z, Hu A, Feng C, Maeda T, Shirai Y, Hassan M A, Yu C P. 2013. Influence of pretreated activated sludge for electricity generation in microbial fuel cell application. Bioresource Technology145, 90–96.

Zhang C, Liu G, Xue S, Wang G. 2016. Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau. Soil Biology & Biochemistry97, 40–49.

Zhang N, Chen X, Han X, Lu X, Yan J, Zou W, Yan L. 2021. Responses of microbial nutrient acquisition to depth of tillage and incorporation of straw in a Chinese mollisol. Frontiers in Environmental Science9, 737075.

Zheng W, Zhao Z, Gong Q, Zhai B, Li Z. 2018. Responses of fungal–bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biology & Biochemistry125, 54–63.

No related articles found!
No Suggested Reading articles found!