Please wait a minute...
Journal of Integrative Agriculture  2023, Vol. 22 Issue (1): 320-324    DOI: 10.1016/j.jia.2022.08.075
Short Communication Advanced Online Publication | Current Issue | Archive | Adv Search |

Characterization of a blaCTX-M-3, blaKPC-2 and blaTEM-1B co-producing IncN plasmid in Escherichia coli of chicken origin

WANG Wen-jing1, 2*, WANG Yi-fu1, 2*, JIN Ya-jie2, SONG Wu-qiang2, LIN Jia-meng2, ZHANG Yan2, TONG Xin-ru2, TU Jian1, 3, LI Rui-chao4, LI Tao2

1 Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, P.R.China

2 Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, P.R.China

3 Guilin Medical University, Guilin 541199, P.R.China

4 Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, P.R.China

Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

目的:分析我国鸡源重要致病菌大肠杆菌耐药性及耐药基因,解析潜在的水平扩散风险。方法:规模化养鸡场棉拭子泄殖腔取样,麦康凯培养基分离单菌,Phoenix-100 全自动细菌鉴定/药敏系统鉴定细菌种类,K-B纸片法检测目的细菌药物敏感性,牛津纳米孔测序技术构建细菌基因组精细图,生物信息学软件及平台解析基因环境及水平转移元件,细菌结合实验验证耐药基因扩散风险。结果201910-202010月,共采集671个泄殖腔样本,分离出302株大肠杆菌单菌,鉴定出一株广泛耐药(An extensively drug-resistant, XDR)大肠杆菌(命名为258E)。MLST分析结果表明,大肠杆菌258E属于ST602型,该分型目前仅见于国外文献报道。K-B纸片法检测结果显示,258E菌株对磷霉素、四环素、β-内酰胺类、氨基糖苷类、喹诺酮类、利福霉素、甲氧苄啶、大环内酯类和头孢菌素类药物均表现出高度耐药。全基因组测序结果表明,大肠杆菌258E染色体全长4,715,664 bp,含有三个质粒(pEC258-1、pEC258-2、pEC258-3,其中pEC258-1和 pEC258-2不含有常见耐药基因,而pEC258-3除了含有常见耐药基因,如qnrS1、 dfrA14、 arr-3acc (6')-Ib等,还含有blaCTX-M-3、 blaKPC-2blaTEM-1B三个重要的耐药基因。质粒分型结果表明,pEC258-3为ST7型,属于质粒不相容群N (incompatibility group N, IncN)。同源性分析结果显示pEC258-3序列与人源肺炎克雷伯菌质粒pCRKP-1-KPC同源性高达99.96%,其不同之处在于:相对pEC258-3,pCRKP-1-KPC质粒在31kb-32kb位点缺失了一个整合酶TinR蛋白编码框。细菌结合实验证实,pEC258-3可使得宿主菌显著提高药物敏感性。同时,流行病学溯源分析结果显示,大肠杆菌258E与英国菌株具有相近的亲缘关系。结论:本研究第一次报道了一株动物源ST602型广泛耐药大肠杆菌,其所含有的质粒可介导宿主菌对多种抗生素产生耐药性,暗示其潜在的耐药性水平扩散风险,也间接证明动物源细菌是耐药性基因的重要储存库和风险传播源头之一。

创新性:本论文是我国第一例动物源ST602型广泛耐药大肠杆菌的报道,丰富和充实了“同一健康” 框架下细菌耐药性对人类公共健康的风险研究。



Abstract  

An extensively drug-resistant (XDR) Escherichia coli strain 258E was isolated from an anal swab sample of a chicken farm of Anhui province in China. Genomic analyses indicated that the strain 258E harbors an incompatibility group N (IncN) plasmid pEC258-3, which co-produces blaCTX-M-3, blaKPC-2, blaTEM-1B, qnrS1, aac(6')-Ib-cr, dfrA14, arr-3, and aac(6')-Ib3. Multiple genome arrangement analyses indicated that pEC258-3 is highly homologous with pCRKP-1-KPC discovered in Klebsiella pneumoniae from a patient. Furthermore, conjugation experiments proved that plasmid pEC258-3 can be transferred horizontally and may pose a significant potential threat in animals, community and hospital settings.

Keywords:  blaCTX-M-3        blaKPC-2        blaTEM-1B        IncN       plasmid       Escherichia coli  
Received: 05 November 2021   Accepted: 07 May 2022
Fund: 

The work was funded by the National Key Research and Development Program of China (2018YFE0192600), the Shanghai Agriculture Applied Technology Development Program, China (T20200104), the Fundamental Research Funds for the Central Universities, China (2020JB05), and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ZDRW202203).

About author:  WANG Wen-jing, E-mail: 2810716541@qq.com; Correspondence LI Tao, Tel: +86-21-34293156, E-mail: litao@shvri.ac.cn; TU Jian, E-mail: 2001001806@usc.edu.cn; LI Rui-chao, E-mail: rchl88@yzu.edu.cn * These authors contributed equally to this study.

Cite this article: 

WANG Wen-jing, WANG Yi-fu, JIN Ya-jie, SONG Wu-qiang, LIN Jia-meng, ZHANG Yan, TONG Xin-ru, TU Jian, LI Rui-chao, LI Tao. 2023.

Characterization of a blaCTX-M-3, blaKPC-2 and blaTEM-1B co-producing IncN plasmid in Escherichia coli of chicken origin . Journal of Integrative Agriculture, 22(1): 320-324.

Bonardi S, Pitino R. 2019. Carbapenemase-producing bacteria in food-producing animals, wildlife and environment: A challenge for human health. Italian Journal of Food Safety, 8, 7956.
Carattoli A. 2009. Resistance plasmid families in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 53, 2227–2238.
Chen L, Hu H, Chavda K D, Zhao S, Liu R, Liang H, Zhang W, Wang X, Jacobs M R, Bonomo R A, Kreiswirth B N. 2014. Complete sequence of a KPC-producing IncN multidrug-resistant plasmid from an epidemic Escherichia coli sequence type 131 strain in China. Antimicrobial Agents and Chemotherapy, 58, 2422–2425.
Citterio B, Andreoni F, Simoni S, Carloni E, Magnani M, Mangiaterra G, Cedraro N, Biavasco F, Vignaroli C. 2020. Plasmid replicon typing of antibiotic-resistant Escherichia coli from clams and marine sediments. Frontiers in Microbiology, 11, 1101.
David S, Reuter S, Harris S R, Glasner C, Feltwell T, Argimon S, Abudahab K, Goater R, Giani T, Errico G, Aspbury M, Sjunnebo S, Eu S W G, Group E S, Feil E J, Rossolini G M, Aanensen D M, Grundmann H. 2019. Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nature Microbiology, 4, 1919–1929.
Day M J, Hopkins K L, Wareham D W, Toleman M A, Elviss N, Randall L, Teale C, Cleary P, Wiuff C, Doumith M, Ellington M J, Woodford N, Livermore D M. 2019. Extended-spectrum beta-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study. The Lancet Infectious Diseases, 19, 1325–1335.
Eikmeyer F, Hadiati A, Szczepanowski R, Wibberg D, Schneiker-Bekel S, Rogers L M, Brown C J, Top E M, Puhler A, Schluter A. 2012. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid, 68, 13–24.
Golebiewski M, Kern-Zdanowicz I, Zienkiewicz M, Adamczyk M, Zylinska J, Baraniak A, Gniadkowski M, Bardowski J, Ceglowski P. 2007. Complete nucleotide sequence of the pCTX-M3 plasmid and its involvement in spread of the extended-spectrum beta-lactamase gene blaCTX-M–3. Antimicrobial Agents and Chemotherapy, 51, 3789–3795.
Grundmann H, Glasner C, Albiger B, Aanensen D M, Tomlinson C T, Andrasevic A T, Canton R, Carmeli Y, Friedrich A W, Giske C G, Glupczynski Y, Gniadkowski M, Livermore D M, Nordmann P, Poirel L, Rossolini G M, Seifert H, Vatopoulos A, Walsh T, Woodford N, et al. 2017. Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): A prospective, multinational study. The Lancet Infectious Diseases, 17, 153–163.
 Karabay O, Altindis M, Koroglu M, Karatuna O, Aydemir O A, Erdem A F. 2016. The carbapenem-resistant Enterobacteriaceae threat is growing: NDM-1 epidemic at a training hospital in Turkey. Annals of Clinical Microbiology and Antimicrobials, 15, 6.
Papp-Wallace K M, Endimiani A, Taracila M A, Bonomo R A. 2011. Carbapenems: Past, present, and future. Antimicrobial Agents & Chemotherapy, 55, 4943–4960.
Partridge S R, Kwong S M, Firth N, Jensen S O. 2018. Mobile genetic elements associated with antimicrobial resistance. Clinical Microbiology Reviews, 31, e00088–e00105.
Tilman D, Cassman K G, Matson P A, Naylor R, Polasky S. 2002. Agricultural sustainability and intensive production practices. Nature, 418, 671–677.
Zhang R, Liu L, Zhou H, Chan E W, Li J, Fang Y, Li Y, Liao K, Chen S. 2017. Nationwide surveillance of clinical carbapenem-resistant enterobacteriaceae (CRE) strains in China. EBioMedicine, 19, 98–106.
No related articles found!
No Suggested Reading articles found!