|
|
|
Waxy allele diversity in waxy maize landraces of Yunnan Province, China |
WU Xiao-yang, LONG Wen-jie, CHEN Dan, ZHOU Guo-yan, DU Juan, WU Shao-yun, CAI Qing |
Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, P.R.China
|
|
|
摘要
糯玉米是主要的鲜食玉米类型之一,waxy基因突变导致了玉米籽粒的糯性。中国糯玉米地方品种丰富,云南及其周边地区被认为是糯玉米的起源中心和遗传多样性中心。已知中国糯玉米waxy等位基因包括wx-D7、wx-D10、wx-Cin4、wx-124、wx-Reina和wx-xuanwei。这些等位基因的突变位点都发生在waxy基因的编码区,而调控区引起waxy基因的突变在玉米中却鲜有报道。本研究以405份云南糯玉米地方品种为材料,通过分子标记检测,鉴定waxy基因上游3.5Kb调控区的大片段插入和缺失。研究发现三类不同的waxy等位基因:wx-PIF/Harbinger、wx-hAT和wx-Elote2。三类等位基因分别属于304bp的PIF/Harbinger家族 MITE类转座子的插入、560bp的hAT家族MITE类转座子的插入和6560bp的LTR-like转座子的插入。此外研究中完成了云南70%以上的糯玉米地方品种waxy等位基因的鉴定,可为糯玉米地方品种的利用提供基础
Abstract Waxy maize is one of the main fresh-eating maize types, and a mutation of the waxy gene causes the waxy character of maize grains. China is rich in waxy maize landraces, and Yunnan and its surrounding areas, are the place of origin and genetic diversity center of Chinese waxy maize. The six known waxy alleles of Chinese waxy maize are wx-D7, wx-D10, wx-Cin4, wx-124, wx-Reina, and wx-Xuanwei. The mutation sites of these alleles all occur in the coding region of the waxy gene, however, the mechanism by which the waxy characteristic is caused by the mutation in the regulatory region has only been reported rarely in maize. In this study, 405 waxy maize landraces from Yunnan were used as materials to identify the insertion and deletion of a large sequence fragment in the upstream ~3.5 kb regulatory region of the waxy gene by molecular marker detection. Three different waxy alleles were identifed in this study: wx-PIF/Harbinger, wx-hAT and wxElote2. These three types of mutations all represented transposons inserted into the regulatory region of the waxy gene. Wx-PIF/Harbinger was a 304-bp MITE class transposon insertion belonging to the PIF/Harbinger family, while wx-hAT was a 560-bp MITE class transposon insertion belonging to the hAT family, and wx-Elote2 was a 6 560-bp LTR-like transposon insertion. In this study, the alleles were identifed for more than 70% of the waxy maize landraces in Yunnan, which provids a basis for the utilization of these waxy maize landraces.
|
Received: 20 April 2020
Accepted: 28 October 2020
|
Fund: This study was supported by the National Crop Sharing and Service Platform-Yunnan subPlatform, China (NICGR2018-030) and the Post-doctoral Targeted Funding of Yunnan Province, China (YRST 2018[168]). |
About author: Received 20 April, 2020 Accepted 28 October, 2020
WU Xiao-yang, E-mail: xtwxy1@163.com; Correspondence CAI Qing, Tel: +86-871-65123762, Fax: +86-871-65144977, E-mail: caiqingysri@163.com |
Cite this article:
WU Xiao-yang, LONG Wen-jie, CHEN Dan, ZHOU Guo-yan, DU Juan, WU Shao-yun, CAI Qing.
2022.
Waxy allele diversity in waxy maize landraces of Yunnan Province, China. Journal of Integrative Agriculture, 21(2): 578-585.
|
Bao J, Yao J, Zhu J, Hu W, Cai D, Li Y, Shu Q, Fan L. 2012. Identification of glutinous maize landraces and inbred lines with altered transcription of waxy gene. Molecular Breeding, 30, 1707–1714.
Bureau T, Wessler S. 1992. Tourist: A large family of small inverted repeat elements frequently associated with maize genes. The Plant Cell, 4, 1283–1294.
Bureau T, Wessler S. 1994. Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. Proceedings of the National Academy of Sciences of the United States of America, 91, 1411–1415.
Cao L. 2004. A summary of the research on the introduction of american cereal crops into China in Ming and Qing Dynasties. Ancient and Modern Agriculture, 2004, 95–103. (in Chinese)
Chen J, Hu Q, Zhang Y, Lu C, Kuang H. 2013. P-MITE: A database for plant miniature inverted-repeat transposable elements. Nucleic Acids Research, 42, D1176–D1181.
Demerec M. 1924. A case of pollen dimorphism in maize. American Journal of Botany, 11, 461–464.
Doyle J, Doyle J. 1990. Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.
Fan L, Bao J, Wang Y, Yao J, Gui Y, Hu W, Zhu J, Zeng M, Li Y, Xu Y. 2009. Post-domestication selection in the maize starch pathway. PLoS ONE, 4, e7612.
Fan L, Quan L, Leng X, Guo X, Hu W, Ruan S, Ma H, Zeng M. 2008. Molecular evidence for post-domestication selection in the Waxy gene of Chinese waxy maize. Molecular Breeding, 22, 329–338.
Feschotte C, Jiang N, Wessler S. 2002. Plant transposable elements: Where genetics meets genomics. Nature Reviews Genetics, 3, 329–341.
Guo A, Zhu Q, Chen X, Luo J. 2007. GSDS: A gene structure display server. Hereditas, 29, 1023–1026. (in Chinese)
Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G. 2015. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31, 1296–1297.
Huang B, Tian M, Zhang J, Huang Y. 2010. Waxy locus and its mutant types in maize Zea mays L. Agricultural Sciences in China, 9, 1–10.
Kijima T, Innan H. 2010. On the estimation of the insertion time of LTR retrotransposable elements. Molecular Biology and Evolution, 27, 896–904.
Klösgen R, Gierl A, Schwarz-Sommer Z, Saedler H. 1986. Molecular analysis of the waxy locus of Zea mays. Molecular Genetics and Genomics, 203, 237–244.
Kluth A, Sprunck S, Becker D, Lörz H, Lütticke S. 2002. 5´ deletion of a gbss1 promoter region from wheat leads to changes in tissue and developmental specificities. Plant Molecular Biology, 49, 669–682.
Kumar A, Bennetzen J. 1999. Plant retrotransposons. Annual Review of Genetics, 33, 479–532.
Lei Y, Long W, Zhou G, Cai Q, Wu S. 2016. Research and utilization of waxy maize germplasm resources in Yunnan. Journal of Henan Agricultural Sciences, 45, 1–7. (in Chinese)
Liu J, Rong T, Li W. 2007. Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize. Molecular Breeding, 20, 93–102.
Liu Y, Chen Y. 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques, 43, 649–656.
Lu Y, Zhao G, Li Y, Fan J, Ding G, Zhao J, Ni X, Xu Y, Wang W. 2013. Identification of two novel waxy alleles and development of their molecular markers in sorghum. Genome, 56, 283–288.
Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki J, Lu S, Chitsaz F, Derbyshire K, Geer C, Gonzales R, Gwadz M, Hurwitz I, Lu F, Marchler H, Song S, Thanki N, Wang Z, Yamashita A, Zhang D, Zheng C, et al. 2017. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45, D200–D203.
Pickersgill B. 2007. Domestication of plants in the Americas: Insights from mendelian and molecular genetics. Annals of Botany, 100, 925–940.
Ron J, Gerald M, Susan R. 1991. A deletion common to two independently derived waxy mutations of maize. Genetics, 128, 425–431.
Rozen S, Skaletsky H. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods in Molecular Biology, 132, 365–386.
Russell D, Fromm M. 1997. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice. Transgenic Research, 6, 157–168.
Schnable S, Ware D, Fulton S, Stein C, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves A, Minx P, Reily A, Courtney L, Kruchowski S, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock M, et al. 2009. The B73 maize genome: Complexity, diversity, and dynamics. Science, 326, 1112–1115.
Spell L, Baran G, Wessler R. 1988. An RFLP adjacent to the maize waxy gene has the structure of a transposable element. Molecular Genetics and Genomics, 211, 364–366.
Stephen F, Thomas L, Alejandro A, Zhang J, Zhang Z, Webb M, David J. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.
Thomas W, François S, Aurélie H, Jeffrey L, Pierre C, Boulos C, Andrew F, Philippe L, Michele M, Olivier P, Etienne P, Phillip S, Alan H. 2007. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8, 973–982.
Thompson J, Higgins D, Gibson T. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673.
Tian M, Huang Y, Liu Y, Rong T. 2003. Genetic difference between Zea mays sinensis and Zea mays indurata from Guizhou and Yunnan provinces revealed by SSR markers. Journal of Sichuan Agricultural University, 21, 213–216. (in Chinese)
Wang Q, Dooner H. 2012, Dynamic evolution of bz orthologous regions in the Andropogoneae and other grasses. The Plant Journal, 72, 212–221.
Weatherwax P. 1922. A rare carbohydrate in waxy maize. Genetics, 7, 568.
Wu X, Chen D, Lu Y, Liu W, Yang X, Li X, Du J, Li L. 2017. Molecular characteristics of two new waxy mutations in China waxy maize. Molecular Breeding, 37, 27.
Wu X, Long W, Chen D, Zhou G, Du J, Wu S, Cai Q. 2020. Molecular characteristics of Waxy allele wx-xuanwei in yunnan waxy maize landraces. Acta Agriculturae Jiangxi, 32, 35–41. (in Chinese)
Wu X, Wu S, Long W, Chen D, Zhou G, Du J, Cai Q, Huang X. 2019. New Waxy allele wx-Reina found in Chinese waxy maize. Genetic Resources and Crop Evolution, 66, 885–895.
Yang T, Zeng M, Wang P. 1981. Analysis on peroxidase isozymes of waxy maize from South China. Acta Botanica Sinica, 23, 110–115. (in Chinese)
Yao J, Bao J, Zhu J, Gui Y, Shen Q, Hu W, Fan L. 2013. Genetic diversity of Waxy gene in Chinese glutinous maize. Acta Agronomica Sinica, 39, 43–49. (in Chinese)
Zeng M. 1987. Blood relationship of Chinese waxy maize. China Seeds, 3, 21–24. (in Chinese)
Zeng M, Yang T, Wang P. 1981. The relative analyses of maize cultivar Menghai four-row wax. Acta Genetica Sinica, 8, 91–96. (in Chinese)
Zheng H, Wang H, Yang H, Wu J, Shi B, Cai R, Xu Y, Wu A, Luo L. 2013. Genetic diversity and molecular evolution of Chinese waxy maize germplasm. PLoS ONE, 8, e66606.
Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415.
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|