Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (1): 178-187    DOI: 10.1016/S2095-3119(20)63445-1
Plant Protection Advanced Online Publication | Current Issue | Archive | Adv Search |
Population genetic structure of Sitobion miscanthi in China
SUN Jing-xuan1, 2, 3, LI Qian1, TAN Xiao-ling1, FAN Jia1, ZHANG Yong1, QIN Yao-guo1, Frédéric FRANCIS2, CHEN Ju-lian 
1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
2 Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux 5030, Belgium
3 Mudanjiang Branch of Heilongjiang Academy of Agricultural Sciences, Mudanjiang 157000, P.R.China 
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

荻草谷网蚜是一种在中国温带地区对小麦作物最具破坏性的蚜虫。但是关于这种蚜虫的遗传结构以及不同地理位置对种群的影响却知之甚少。在本研究中,我们通过使用一个线粒体基因COI,一个核基因EF-1α,以及两个内共生菌布赫纳氏菌基因gndtrpA分析了中国18个地理种群,从而研究了荻草谷网蚜的种群遗传结构和种群历史动态。各群体的数据分析显示单倍型多样性高,核苷酸变异低。SAMOVA分析没有发现遗传距离和地理距离之间的相关性。然而,种群多样性较高的地区具有较高的单倍型多样性。因此,我们推测,在中国荻草谷网蚜的自然迁移途径主要有两条。一条路径是从云南到四川盆地,另外一条是从武汉、信阳、胶东半岛地区到西北地区。基于这一假设,我们推断这些蚜虫首先出现在西南和南部地区,并在东南和西南季风的帮助下于春夏季在北方发生。秋季,蚜虫随东北和西北季风向南扩散。



Abstract  The wheat aphid, Sitobion miscanthi, is one of the most destructive pests of wheat plants in the temperate regions of China.  Little is known about the genetic structure evolution of  the different geographic populations of S. miscanthi with its migration.  In this study, we investigated the population genetic structure and demographic history of S. miscanthi by analysing 18 geographical populations across China using one mitochondrial gene, COI; one nuclear gene, EF-1α; and two endosymbiont Buchnera genes, gnd and trpA.  Analysis of data from the various groups showed high haplotype diversity and low nucleotide variation.  SAMOVA analysis did not find a correlation between genetic distance and geographic distance.  However, areas with high population diversity exhibited high haplotype diversity.  Therefore, we speculate that there are two main natural migration pathways of S. miscanthi in China.  One is from Yunnan to the Sichuan Basin, and the other is from Wuhan, Xinyang and Jiaodong Peninsula areas to the northwest.  Based on this hypothesis, we inferred that these aphid populations appear first in the southwestern and southern regions and spread to the north with the help of the southeastern and southwestern monsoons, which occur in spring and summer.  In autumn, the aphids spread southward with the northeastern and northwestern monsoons.

Keywords:  Sitobion miscanthi        molecular marker       COI        symbiotic bacteria        phylogenetic tree  
Received: 12 June 2020   Accepted: 21 September 2020
Fund: We would like to thank our technician Ms. Liu Yanxia for aphid rearing in our laboratory.  This study was funded by the National Natural Science Foundation of China (31871979, 32001900 and 31901881), the National Key R&D Program in China (2017YFD0201700, 2017YFD0200900 and 2016YFD0300700), and the China Agriculture Research System of MOF and MARA (CARS-22).

Cite this article: 

SUN Jing-xuan, LI Qian, TAN Xiao-ling, FAN Jia, ZHANG Yong, QIN Yao-guo, Frédéric FRANCIS, CHEN Ju-lian. 2022. Population genetic structure of Sitobion miscanthi in China. Journal of Integrative Agriculture, 21(1): 178-187.

Abadi S, Azouri D, Pupko T, Mayrose I. 2019. Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 10, 43–53.
Alerstam T, Kesson A H. 2003. Long-distance migration: Evolution and determinants. Oikos, 103, 247–260.
Bandelt H J, Macaulay V, Richards M. 2000. Median networks: Speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Molecular Phylogenetics and Evolution, 16, 8–28.
Bernays E A, Klein B A. 2002. Quantifying the symbiont contribution to essential amino acids in aphids: the importance of tryptophan for Uroleucon ambrosiae. Physiological Entomology, 27, 275–284.
Birkle L M, Minto L B, Douglas A E. 2002. Relating genotype and phenotype for tryptophan synthesis in an aphid–bacterial symbiosis. Physiological Entomology, 27, 302–306.
Black W C, Baer C F, Antolin M F. 2001. Population genomics: Genome-wide sampling of insect populations. Annual Review of Entomology, 46, 441.
Braby M F, Vila R, Pierce N E. 2010. Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher classification and biogeography. Zoological Journal of the Linnean Society, 2, 239–275.
Chapman J W, Reynolds D R, Smith A D, Riley J R, Pedgley D E, Woiwod I P. 2010. High-altitude migration of the diamondback moth Plutella xylostella to the U.K.: A study using radar, aerial netting, and ground trapping. Ecological Entomology, 27, 641–650.
Chen R. 2013. The gnd gene of Buchnera as a new, effective DNA barcode for aphid identification. Systematic Entomology, 38, 615–625.
Christer B, Christian S, Jakob B. 2008. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS ONE, 3, e1957.
Danks H V. 1978. Modes of seasonal adaptation in the insects: I. Winter survival. Canadian Entomologist, 110, 1167–1205. 
Deng F, He Q, Zhao Z. 2016. Suppressing a peroxidase gene reduces survival in the wheat aphid Sitobion avenae. Archives of Insect Biochemistry and Physiology, 93, 86–95. 
Dingle H. 1972. Migration strategies of insects. Science, 175, 1327.
Dingle H. 1982. Function of migration in the seasonal synchronization of insects. Entomologia Experimentalis et Applicata, 31, 36–48.
Douglas A E. 1998. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43, 17–37.
Douglas A E, Adams D. 1997. How symbiotic bacteria influence plant utilisation by the polyphagous aphid, Aphis fabae. Oecologia, 110, 528–532. 
Dupanloup I, Schneider S, Excoffier L. 2002. A simulated annealing approach to define the genetic structure of populations. Molecular Ecology, 11, 2571–2581.
Excoffier L, Lischer H E L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. 
Foottit R G, Maw H E L, Pike K S, Miller R H. 2010. The identity of Pentalonia nigronervosa Coquerel and P. caladii van der Goot (Hemiptera: Aphididae) based on molecular and morphometric analysis. Zootaxa, 2358, 25–38.
Friedberg A L. 1993. Ripe for rivalry: Prospects for peace in a multipolar Asia. International Security, 18, 5.
Gauthier M P L, Barabe D, Bruneau A. 2008. Molecular phylogeny of the genus Philodendron (Araceae): Delimitation and infrageneric classification. Botanical Journal of the Linnean Society, 156, 13–27.
George K S, Gair R. 2007. Crop loss assessment on winter wheat attacked by the grain aphid, Sitobion avenae (F.). Plant Pathology, 28, 143–149.
Hasiotis S T. 2003. Complex ichnofossils of solitary and social soil organisms: Understanding their evolution and roles in terrestrial paleoecosystems. Palaeogeography Palaeoclimatology Palaeoecology, 192, 310–320. 
Hill D S. 1975. Agricultural insect pests of the tropics and their control. Experimental Agriculture, 12, 817–819.
Khan A M. 2012. Wheat crop yield losses caused by the aphids infestation. Biofertilizers & Biopesticides, 3, 2–7.
Kumar S, Tamura K, Nei M. 1994. MEGA: Molecular evolutionary genetics analysis software for microcomputers. Computer Applications in the Biosciences, 10, 189–192.
Larsson H. 2005. A crop loss model and economic thresholds for the grain aphid, Sitobion avenae (F.), in winter wheat in southern Sweden. Crop Protection, 24, 397–405.
Liadouze I, Febvay G, Guillaud J, Bonnot G. 1995. Effect of diet on the free amino acid pools of symbiotic and aposymbiotic pea aphids, Acyrthosiphon pisum. Journal of Insect Physiology, 41, 33–40.
Lindroth E J. 2012. Population genetics of the western bean cutworm (Striacosta albicosta Smith) across the United States. Annals of the Entomological Society of America, 105, 685–692. 
Nair K S S, Schabel H G, Hilje L, Nair K S S, Varma R V. 2000. Insect Pests and Diseases in Indonesian Forests: An Assessment of the Major Threats, Research Efforts and Literature. Center for International Forestry Research Press, Bogor. pp.16–20. 
Nakabachi A, Ishikawa H. 1999. Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. Journal of Insect Physiology, 45, 1–6.
Normark, Benjamin B. 1999. Evolution a putattvely ancient asexual aphid lineage: Recombination and rapid karyotype change. Evolution, 53, 1458–1469.
Nyakaana S, Arctander P. 1999. Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow. Molecular Ecology, 8, 1105–1115.
Penny J G, Paul B, Mylo L T. 2002. Secondary (γ-Proteobacteria) endosymbionts infect the primary (β-Proteobacteria) endosymbionts of mealybugs multiple times and coevolve with their hosts. Applied & Environmental Microbiology, 68, 30–42.
Pietro J P D, Caillaud C M, Chaubet B, Pierre J S, Trottet M. 1998. Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breeding, 117, 407–412.
Ratnasingham S, Hebert P D N. 2007. BOLD: The barcode of life data system: Barcoding. Molecular Ecology Notes, 7, 355–364.
Ravel S, Monteny N, Olmos D V, Verdugo J E, Gérard C. 2001. A preliminary study of the population genetics of Aedes aegypti (Diptera: Culicidae) from Mexico using microsatellite and AFLP markers. Acta Tropica, 78, 241–250.
Rémy J P, Mousadik A E, Pons O. 1998. Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 35–43.
Reynolds J, Weir B S, Cockerham C C. 1983. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics, 105, 767–779.
Richards S, Gibbs R A, Gerardo N M, Moran N, Hunter W. 2010. Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biology, 8, e1000313.
Sato S, Ishikawa H. 1997. Structure and expression of the dnaKJ Operon of Buchnera, an intracellular symbiotic bacteria of aphid. Journal of Biochemistry, 122, 41–48.
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. 2000. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature, 407, 81–86.
Skrisovska L, Frédéric H T A. 2008. Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: Application to the RRMs of Npl3p and hnRNP L. Journal of Molecular Biology, 375, 151–164. 
Skurray R A, Nagaishi H, Clark A J. 1978. Construction and BamHI analysis of chimeric plasmids containing EcoRI DNA fragments of the F sex factor. Plasmid, 1, 174–186.
Slatkin M. 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.
Smith A, Marcfoggin J. 1998. The plateau pika (Ochotona Curzoniae) is a keystone species for biodiversity on the Tibetan plateau. Animal Conservation, 2, 234–245. 
Thomson L J, Macfadyen S, Hoffmann A A. 2010. Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52, 296–306.
Vignal A, Milan D, Cristobal M S, Eggen A. 2002. A review on SNP and other types of molecular markers and their use in animal genetics. Genetics Selection Evolution, 34, 212–223.
Watkinson A R, Lintell S G, Newsham K K, Rowcliffe J M. 2010. Population interactions and the determinants of population size. Plant Species Biology, 8, 149–158.
Wei S J, Cao L J, Gong Y J. 2015. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Molecular Ecology, 24, 4094–4111.
Wernegreen J J, Moran N A. 2000. Decay of mutualistic potential in aphid endosymbionts through silencing of biosynthetic loci: Buchnera of Diuraphis. Proceedings of Biological Sciences, 267, 1423–1431.
Wilkinson T L, Douglas A E. 1996. The impact of aposymbiosis on amino acid metabolism of pea aphids. Entomologia Experimentalis et Applicata, 80, 279–282.
Williams I S, Jones T H, Hartley S E. 2001. The role of resources and natural enemies in determining the distribution of an insect herbivore population. Ecological Entomology, 26, 204–211.
Winder L, Perry J N, Holland J M. 1999. The spatial and temporal distribution of the grain aphid Sitobion avenae in winter wheat. Entomologia Experimentalis et Applicata, 93, 275–288.
Xu X D, Zhao T L, Shi X H, Lu C G. 2015. A study of the role of the Tibetan Plateau’s thermal forcing in modulating rainband and moisture transport in eastern China. Acta Meteorologica Sinica, 73, 153–161. (in Chinese)
Xu Z H, Chen J L, Cheng D F, Liu Y, Frédéric F. 2011. Genetic variation among the geographic population of the grain aphid, Sitobion avenae (Hemiptera: Aphididae) in China inferred from mitochondrial COI gene sequence. Agricultural Sciences in China, 10, 1041–1048. 
Zhang B, Edwards O, Kang L, Fuller S. 2014. A multi-genome analysis approach enables tracking of the invasion of a single Russian wheat aphid (Diuraphis noxia) clone throughout the New World. Molecular Ecology, 23, 1940–1951.

[1] WU Bang-bang, SHI Meng-meng, Mohammad POURKHEIRANDISH, ZHAO Qi, WANG Ying, YANG Chen-kang, QIAO Ling, ZHAO Jia-jia, YAN Su-xian, ZHENG Xing-wei, ZHENG Jun. Allele mining of wheat ABA receptor at TaPYL4 suggests neo-functionalization among the wheat homoeologs[J]. >Journal of Integrative Agriculture, 2022, 21(8): 2183-2196.
No Suggested Reading articles found!