Please wait a minute...
Journal of Integrative Agriculture  2022, Vol. 21 Issue (2): 310-315    DOI: 10.1016/S2095-3119(20)63396-2
Review Advanced Online Publication | Current Issue | Archive | Adv Search |
Factors affecting hydraulic conductivity and methods to measure in plants
GENG Da-li1, 2, 3, LI Lei1, YANG Yu-sen1, MA Feng-wang1, GUAN Qing-mei1
1 State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple/College of Horticulture, Northwest A&F University, Yangling 712100, P.R.China
2 Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R.China
3 School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
摘要  

在干旱胁迫下,植物的液压网络面临数项挑战,而导水率是液压网络对干旱压力响应的主要指标之一。本文回顾了我们对直接影响水力传导率的因素及其测量方法的理解,简要介绍了植物液压网络对干旱胁迫的响应的两个主要节点:植物水通道蛋白(AQPs)和维管,并讨论了如何测量液压网络中不同部分的导水率。方法:测量导水率的方法有蒸发通量法(EFM)高压流量计(HPFM)和真空泵法。其中EFM基于压力泵定量分析蒸腾量(E)和叶水势,需要足够高的蒸腾速率来解决压力弹的驱动梯度;HPFM基于仪器中压缩空气提供的高压下流入叶片的水质量的测量当从叶柄流入叶片、从气孔流出的水分达到稳定状态时,可以计算出叶片的电导率,但一次只能检测一个叶子,大约需要2030分钟才能达到稳定的流。而真空泵法是一种改进的HPFM,首先将叶子切下放入保温瓶中,叶柄与提供缓冲溶液的试管连接。真空泵抽出保温瓶的空气,并提供亚大气压以驱动缓冲液流入叶片然后,可以通过不同压力下进入叶片的缓冲流率的回归斜率来测量叶片的电导率。结果:植物水网对干旱胁迫响应的两个主要节点,其中植物水通道蛋白(AQPs)节点是一类跨膜蛋白,由6个跨膜的外螺旋和5个环组成,形成了一个高度特殊的过滤器,只允许水通过。在干旱胁迫下,脱落酸(ABA)在木质部和其他植物组织中迅速积累,而大多数AQPs的表达随着ABA的积累而降低,根和叶中AQPsABA的响应不同,这对植物适应干旱胁迫具有重要意义。AQPs的活性不仅显著影响把关细胞的水分吸收和外质运输,同时在气孔运动中也起着重要作用。而维管节点是水从根到芽的运输工具,同时维管的特性也决定了植物的轴向水力传导性(Tombesi et al. 2010),而维管栓塞是导致植物脱水死亡的重要原因。目前测量植物导水率主要有蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法这三种,其中高压流量计的应用最为广泛,但均会对植物造成损伤且检测耗时。其中EFM类似于体内的蒸腾通量,但需要足够高的蒸腾速率来解决压力弹的驱动梯度;与EFM不同,HPFM可以用于测量生长和膨胀叶片的电导率。当叶片不能充分蒸发时,HPFM方法也允许在光和温度不足的条件下测量电导率;而真空泵法是一种改进的HPFM法,这种方法对于每个样品大约需要2小时,并且亚大气压不足以模拟一个可以驱动水从叶片中流出的力(Flexas et al. 2013)结论:高通量植物表型越来越多地应用于植物研究 (Gehan and Kellogg 2017; Marko et al. 2018; Mir et al. 2019),因此开发用于测量导水率的高通量技术将对未来的研究极为有用。但是由于导水率受许多因素的影响,因此确保相关因素保持一周甚至更长时间内稳定是一项重大挑战。目前蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法是检测导水率三种主要的方法,但均会对植物造成损伤且耗时,因此目前急需更先进的方法来更快、更容易和更精确地测量导水率。创新点:本文简要介绍了植物水网对干旱胁迫响应的两个主要节点,植物水通道蛋白(AQPs)和维管,同时介绍了蒸发通量法(EFM)、高压流量计(HPFM)和真空泵法这三种检测植物导水率的原理及特点。进一步阐述了目前急需开发更先进的高通量技术来更快、更容易和更精确地测量导水率,这将对未来植物表型的研究意义重大。



Abstract  The plant hydraulic network faces several challenges under drought stress.  Hydraulic conductivity is one of the major indicators of the hydraulic network’s response to drought stress.  Here, we review our current understanding of the factors directly affecting hydraulic conductivity and the methods used to measure it.   
Keywords:   hydraulic conductivity       aquaporins       vessel       vessel embolism  
Received: 29 June 2020   Accepted: 04 August 2020
Fund: This work was supported by the National Natural Science Foundation of China (31622049 and 31660565).  Dr.  Guan qingmei is also supported by the Thousand Talents Plan of China.
About author:  GENG Da-li, E-mail: arberting@outlook.com; Correspondence GUAN Qing-mei, Tel/Fax: +86-29-87082864, E-mail: qguan@nwsuaf.edu.cn

Cite this article: 

GENG Da-li, LI Lei, YANG Yu-sen, MA Feng-wang, GUAN Qing-mei. 2022. Factors affecting hydraulic conductivity and methods to measure in plants. Journal of Integrative Agriculture, 21(2): 310-315.

Alavilli H, Awasthi J P, Rout G R, Sahoo L, Lee B H, Panda S K. 2016. Overexpression of a barley aquaporin gene, HvPIP2;5 confers salt and osmotic stress tolerance in yeast and plants. Frontiers in Plant Science, 7, 1566
Alder N N, Pockman W T, Sperry J S, Nuismer S. 1997. Use of centrifugal force in the study of xylem cavitation. Journal of Experimental Botany, 48, 665–674.
Alexandersson E, Fraysse L, Sjövall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Kjellbom P. 2005. Whole gene family expression and drought stress regulation of aquaporins. Plant Molecular Biology, 59, 469–484.
Améglio T, Bodet C, Lacointe A, Cochard H. 2002. Winter embolism, mechanisms of xylem hydraulic conductivity recovery and springtime growth patterns in walnut and peach trees. Tree Physiology, 22, 1211–1220. 
Anderegg W R, Berry J A, Smith D D, Sperry J S, Anderegg L D, Field C B. 2012. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proceedings of the National Academy of Sciences of the United States of America, 109, 233–240. 
Blackman C J, Brodribb T J, Jordan G J. 2012. Leaf hydraulic vulnerability influences species’ bioclimatic limits in a diverse group of woody angiosperms. Oecologia, 168, 1–10.
Boursiac Y, Chen S, Luu D T, Sorieul M, van den Dries N, Maurel C. 2005. Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiology, 139, 790–805. 
Boyer J S. 1977. Regulation of water movement in whole plants. Symposia of the Society for Experimental Biology, 31, 455–470.
Brodribb T J, Cochard H. 2009. Hydraulic failure defines the recovery and point of death in water-stressed conifers. Plant Physiology, 149, 575–584.
Brown D. 2017. The discovery of water channels (Aquaporins). Annals of Nutrition and Metabolism, 70 (Suppl 1), 37–42. 
Chen J W, Zhang Q, Li X S, Cao K F. 2009. Independence of stem and leaf hydraulic traits in six Euphorbiaceae tree species with contrasting leaf phenology. Planta, 230, 459–468. 
Choat B, Brodribb T J, Brodersen C R, Duursma R A, López R, Medlyn B E. 2018. Triggers of tree mortality under drought. Nature, 558, 531–539.
Christmann A, Weiler E W, Steudle E, Grill E. 2007. A hydraulic signal in root-to-shoot signalling of water shortage. Plant Journal, 52, 167–174.
Dayer S, Herrera J C, Dai Z, Burlett R, Lamarque L J, Delzon S, Bortolami G, Cochard H, Gambetta G A. 2020. The sequence and thresholds of leaf hydraulic traits underlying grapevine varietal differences in drought tolerance. Journal of Experimental Botany, 11, 4333–4344. 
Ding L, Gao C, Li Y, Li Y, Zhu Y, Xu G, Shen Q, Kaldenhoff R, Kai L, Guo S. 2015. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP). Plant Science, 234, 14–21.
Flexas J, Scoffoni C, Gago J, Sack L. 2013. Leaf mesophyll conductance and leaf hydraulic conductance: An introduction to their measurement and coordination. Journal of Experimental Botany, 64, 3965–3981.
Gehan M A, Kellogg E A. 2017. High-throughput phenotyping. American Journal of Botany, 104, 505–508. 
Geng D, Chen P, Shen X, Zhang Y, Li X, Jiang L, Xie Y, Niu C, Zhang J, Huang X, Ma F, Guan Q. 2018. MdMYB88 and MdMYB124 enhance drought tolerance by modulating root vessels and cell walls in apple. Plant Physiology, 178, 1296–1309. 
Geng D L, Lu L Y, Yan M J, Shen X X, Jiang L J, Li H Y, Wang L P, Yan Y, Xu J D, Li C Y, Yu J T, Ma F W, Guan Q M. 2019. Physiological and transcriptomic analyses of roots from Malus sieversii under drought stress. Journal of Integrative Agriculture, 18, 1280–1294.
Gorska A, Zwieniecka A, Holbrook N M, Zwieniecki M A. 2008. Nitrate induction of root hydraulic conductivity in maize is not correlated with aquaporin expression. Planta, 228, 989–998.
Grondin A, Rodrigues O, Verdoucq L, Merlot S, Leonhardt N, Maurel C. 2015. Aquaporins contribute to ABA-triggered stomatal closure through OST1-mediated phosphorylation. Plant Cell, 27, 1945–1954.
Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F. 2006. Localization and quantification of plasma membrane aquaporin expression in maize primary root: A clue to understanding their role as cellular plumbers. Plant Molecular Biology, 62, 305–323.
Halperin O, Gebremedhin A, Wallach R, Moshelion M. 2017. High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. The Plant Journal, 89, 839–850.
Holbrook N M, Shashidhar V R, James R A, Munns R. 2002. Stomatal control in tomato with ABA-deficient roots: Response of grafted plants to soil drying. Journal of Experimental Botany, 53, 1503–1514.
Jiang G F, Goodale U M, Liu Y Y, Hao G Y, Cao K F. 2017. Salt management strategy defines the stem and leaf hydraulic characteristics of six mangrove tree species. Tree Physiology, 37, 389–401. 
Johnson D M, Brodersen C R, Reed M, Domec J C, Jackson R B. 2014. Contrasting hydraulic architecture and function in deep and shallow roots of tree species from a semi-arid habitat. Annals of Botany, 113, 617–627. 
Kirfel K, Leuschner C, Hertel D, Schuldt B. 2017. Influence of root diameter and soil depth on the xylem anatomy of fine- to medium-sized roots of mature beech trees in the top- and subsoil. Frontiers in Plant Science, 8, 1194. 
Kolb K J, Sperry J S, Lamont B B. 1996. A method for measuring xylem hydraulic conductance and embolism in entire root and shoot systems. Journal of Experimental Botany, 47, 1805–1810.
Korhonen A, Lehto T, Heinonen J, Repo T. 2018. Whole-plant frost hardiness of mycorrhizal (Hebeloma sp. or Suillus luteus) and non-mycorrhizal Scots pine seedlings. Tree Physiology, 39, 526–535.
Kotowska M M, Hertel D, Rajab Y A, Barus H, Schuldt B. 2015. Patterns in hydraulic architecture from roots to branches in six tropical tree species from cacao agroforestry and their relation to wood density and stem growth. Frontiers in Plant Science, 6, 191. 
Kudoyarova G, Veselova S, Hartung W, Farhutdinov R, Veselov D, Sharipova G. 2011. Involvement of root ABA and hydraulic conductivity in the control of water relations in wheat plants exposed to increased evaporative demand. Planta, 233, 87–94.
Laur J, Hacke U G. 2013. Transpirational demand affects aquaporin expression in poplar roots. Journal of Experimental Botany, 64, 2283–2293.
Lens F, Sperry J S, Christman M A, Choat B, Rabaey D, Jansen S. 2011. Testing hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709–723. 
Lian H L, Yu X, Lane D, Sun W N, Tang Z C, Su W A. 2006. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Research, 16, 651–660.
Maurel C, Santoni V, Luu D T, Wudick M M, Verdoucq L. 2009. The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology, 12, 690–698.
Marko D, Briglia N, Summerer S, Petrozza A, Cellini F, Iannacone R. 2018. High-throughput phenotyping in plant stress response: Methods and potential applications to polyamine field. Molecular Biology Reports, 1694, 373–388. 
Meng D, Fricke W. 2017. Changes in root hydraulic conductivity facilitate the overall hydraulic response of rice (Oryza sativa L.) cultivars to salt and osmotic stress. Plant Physiology and Biochemistry, 113, 64–77. 
Meng D, Walsh M, Fricke W. 2016. Rapid changes in root hydraulic conductivity and aquaporin expression in rice (Oryza sativa L.) in response to shoot removal - xylem tension as a possible signal. Annals of Botany, 118, 809–819.
Mir R R, Reynolds M, Pinto F, Khan M A, Bhat M A. 2019. High-throughput phenotyping for crop improvement in the genomics era. Plant Science, 282, 60–72. 
Munitz S, Netzer Y, Shtein I, Schwartz A. 2018. Water availability dynamics have long-term effects on mature stem structure in Vitis vinifera. American Journal of Botany, 105, 1443–1452. 
Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. 2000. Structural determinants of water permeation through aquaporin-1. Nature, 407, 599–605.
Nardini A, Tyree M T, Salleo S. 2001. Xylem cavitation in the leaf of Prunus laurocerasus and its impact on leaf hydraulics. Plant Physiology, 125, 1700–1709.
Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B. 2015. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant Cell Environment, 38, 2652–2661. 
Olaetxea M, Mora V, Bacaicoa E, Garnica M, Fuentes M, Casanova E, Zamarreño A M, Iriarte J C, Etayo D, Ederra I, Gonzalo R, Baigorri R, García-Mina J M. 2015. Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiology, 2169, 2587–2596.
Olano J M, González-Muñoz N, Arzac A, Rozas V, von Arx G, Delzon S, García-Cervigón A I. 2017. Sex determines xylem anatomy in a dioecious conifer: Hydraulic consequences in a drier world. Tree Physiology, 37, 1493–1502. 
Pantin F, Monnet F, Jannaud D, Costa J M, Renaud J, Muller B, Simonneau T, Genty B. 2013.  The dual effect of abscisic acid on stomata. New Phytologist, 197, 65–72.
Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F. 2009. Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: A trans-scale approach. Plant Physiology, 149, 2000–2012.
Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schäffner A R, Maurel C. 2010. A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiology, 152, 1418–1430.
Sabir F, Prista C, Madeira A, Moura T, Loureiro-Dias M C, Soveral G. 2016. Water transport. Advances in Experimental Medicine and Biology, 892, 107–124. 
Sack L, Melcher P J, Zwieniecki M A, Holbrook N M. 2002. The hydraulic conductance of the angiosperm leaf lamina: A comparison of three measurement methods. Journal of Experimental Botany, 53, 2177–2184.
Sakurai J, Ahamed A, Murai M, Maeshima M, Uemura M. 2008. Tissue and cell-specific localization of rice aquaporins and their water transport activities. Plant Cell Physioloy, 49, 30–39.
Sakurai-Ishikawa J, Murai-Hatano M, Hayashi H, Ahamed A, Fukushi K, Matsumoto T, Kitagawa Y. 2011. Transpiration from shoots triggers diurnal changes in root aquaporin expression. Plant Cell Environment, 34, 1150–1163.
Schuldt B, Leuschner C, Brock N, Horna V. 2013. Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiology, 33, 161–174. 
Sperry J S, Donnelly J R, Tyree M T. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environment, 11, 35–40.
Tombesi S, Johnson R S, Day K R, DeJong T M. 2010. Relationships between xylem vessel characteristics, calculated axial hydraulic conductance and size-controlling capacity of peach rootstocks. Annals of Botany, 105, 327–331. 
Tsuda M, Tyree M T. 1997. Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum. Tree Physiology, 17, 351–357.
Tsuda M, Tyree M T. 2000. Plant hydraulic conductance measured by the high pressure flow meter in crop plants. Journal of Experimental Botany, 51, 823–828.
Tyerman S D, Niemietz C M, Bramley H. 2002. Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant Cell Environment, 25, 173–194.
Tyree M T, Ewers F W. 1991. The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345–360.
Tyree M T, Nardini A, Salleo S, Sack L E, Omari B. 2005 . The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: Any role for stomatal response? Journal of Experimental Botany, 56, 737–744.
Tyree M T, Zimmermann M H. 2000. Xylem Structure and the Ascent of Sap. Springer, New York.
Yang H M, Zhang X Y, Tang Q L, Wang G X. 2006. Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean. Plant Growth Regulation, 50, 79–83.
Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G. 2012. Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS ONE, 7, e52439. 

[1] WANG Wei-feng, ZONG Yu-zheng, ZHANG Sui-qi. Effects of short-term osmotic stress on leaf hydraulic conductivity and ZmPIPs mRNA accumulation in maize seedlings[J]. >Journal of Integrative Agriculture, 2016, 15(11): 2497-2506.
No Suggested Reading articles found!