Please wait a minute...
Journal of Integrative Agriculture  2019, Vol. 18 Issue (8): 1936-1943    DOI: 10.1016/S2095-3119(18)62135-5
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
A rapid, simple, and sensitive immunoagglutination assay with silica nanoparticles for serotype identification of Pseudomonas aeruginosa
DONG Xiu-mei1, 2*, TAO Jing1*, LI Ting-ting1, ZHANG Ping1, 2, ZHU Yan1, 2, TANG Yu1, SU Rui-hong1, SHI Dong-fang1, 2 
1 College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R.China
2 Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R.China
Download:  PDF in ScienceDirect  
Export:  BibTeX | EndNote (RIS)      
Abstract  
An agglutination test based on colored silica nanoparticles (colored SiNps) was established to detect serotypes of Pseudomonas aeruginosa.  Monodisperse colored SiNps were used as agglutination test carriers.  The colored SiNps were prepared through reverse microemulsion with reactive dyes, sensitized with 11 kinds of mono-specific antibodies against P. aeruginosa, and denoted as IgG-colored SiNps.  Eleven kinds of IgG-colored SiNps were individually mixed with P. aeruginosa on a glass slide.  Different serotypes of P. aeruginosa could be identified by agglutination test with evident agglutination.  The P. aeruginosa could be detected in a range from 3.6×105 to 3.6×1012 cfu mL–1.  This new agglutination test was confirmed to be a speci?c, sensitive, fast, easy-to-perform, and cost-ef?cient tool for the routine diagnosis of P. aeruginosa.
Keywords:   Pseudomonas aeruginosa        colored silica nanoparticles        agglutination test        serotype detection  
Received: 21 August 2018   Accepted:
Fund: 
This research was supported by the Open Project of the State Key Laboratory of Veterinary Etiological Biology, China (SKLVEB 2013 KFKT 0015).
Corresponding Authors:  Correspondence SHI Dong-fang, Tel: +86-451-55190125, Fax: +86-451-55191200, E-mail: shidf@neau.edu.cn   
About author:  DONG Xiu-mei, Tel: +86-451-55190125, E-mail: neaudxm@163.com; TAO Jing, Tel: +86-451-55190125, E-mail: taotao19920403 @126.com; * These authors contributed equally to this study.

Cite this article: 

DONG Xiu-mei, TAO Jing, LI Ting-ting, ZHANG Ping, ZHU Yan, TANG Yu, SU Rui-hong, SHI Dong-fang . 2019.

A rapid, simple, and sensitive immunoagglutination assay with silica nanoparticles for serotype identification of Pseudomonas aeruginosa
. Journal of Integrative Agriculture, 18(8): 1936-1943.

Cai L, Chen Z Z, Chen M Y, Tang H W, Pang D W. 2013. MUC-1
aptamer-conjugated dye-doped silica nanoparticles for MCF-7 cells detection. Biomaterials, 34, 371–381.
Grundmann H, Schneider C D, Daschner F D, Pitt T L. 1995. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. Journal of Clinical Microbiology, 33, 528–534.
He X, Wang K, Tan W, Li J, Yang X, Huang S, Li D, Xiao D. 2002. Photostable luminescent nanoparticles as biological label for cell recognition of system lupus erythematosus patients. Journal of Nanoscience & Nanotechnology, 2, 317–320.
Koch H, Emrich T, Jampen S, Wyss M, Gafner V, Lazar H, Rudolf M P. 2014. Development of a 4-valent genotyping assay for direct identification of the most frequent Pseudomonas aeruginosa serotypes from respiratory specimens of pneumonia patients. Journal of Medical Microbiology, 63, 508–517.
Lin C H, Chang J H, Yeh Y Q, Wu S H, Liu Y H, Mou C Y. 2015. Formation of hollow silica nanospheres by reverse microemulsion. Nanoscale, 7, 9614–9626.
Qi J, Li L L, Du Y J, Wang S R, Wang J W, Luo Y B, Che J, Lu J X, Liu H, Hu G C, Li J X, Gong Y W, Wang G S, Hu M, Yan S G, Liu Y Q. 2014. The identification, typing, and antimicrobial susceptibility of Pseudomonas aeruginosa isolated from mink with hemorrhagic pneumonia. Veterinary Microbiology, 170, 456–461.
Renders N, Römling Y, Verbrugh H, Belkum A V. 1996. Comparative typing of Pseudomonas aeruginosa by random amplification of polymorphic DNA or pulsed-field gel electrophoresis of DNA macrorestriction fragments. Journal of Clinical Microbiology, 34, 3190–3195.
Salomonsen C M, Boye M, Høiby N, Jensen T H, Hammer A S. 2013a. Comparison of histological lesions in mink with acute hemorrhagic pneumonia associated with Pseudomonas aeruginosa or Escherichia coli. Canadian Journal of Veterinary Research, 77, 199–204.
Salomonsen C M, Chriél M, Jensen T H, Rangstrup-Christensen L, Høiby N, Hammer A S. 2013b. Effect of infectious dose and season on development of hemorrhagic pneumonia in mink caused by Pseudomonas aeruginosa. Canadian Journal of Veterinary Research, 77, 221–225.
Salomonsen C M, Themudo G E, Jelsbak L, Molin S, Høiby N, Hammer A S. 2013c. Typing of Pseudomonas aeruginosa from hemorrhagic pneumonia in mink (Neovison vison). Veterinary Microbiology, 163, 103–109.
Sauer K, Camper A K, Ehrlich G D, Costerton J W, Davies D G. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. Journal of Bacteriology, 184, 1140–1154.
Tuitemwong P, Songvorawit N, Tuitemwong K. 2013. Facile and sensitive epifluorescent silica nanoparticles for the rapid screening of EHEC. Journal of Nanomaterials, 2013, 828–835.
Wang H, Zhang Y, Yan B, Liu L, Wang S, Shen G, Yu R. 2006. Rapid, simple, and sensitive immunoagglutination assay with SiO2 particles and quartz crystal microbalance for quantifying Schistosoma japonicum antibodies. Clinical Chemistry, 52, 2065–2071.
Wang X, Niessner R, Tang D, Knopp D. 2016. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Analytica Chimica Acta, 912, 10–23.
Weigum S E, Xiang L, Osta E, Li L, López G P. 2016. Hollow silica microspheres for buoyancy-assisted separation of infectious pathogens from stool. Journal of Chromatography (A), 1466, 29–36.
Whiteley M, Bangera M G, Bumgarner R E, Parsek M R, Teitzel G M, Lory S, Greenberg E P. 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature, 413, 860–864.
Xue B, Xiu L C, Xi J Y. 2011. Epidemiological investigation of mink hemorrhagic pneumonia and research progress of Pseudomonas aeruginosa vaccine. Modern Agricultural Science & Technology, (15), 317–318. (in Chinese)
Yu H, Zhao G, Dou W. 2015. Simultaneous detection of pathogenic bacteria using agglutination test based on colored silica nanoparticles. Current Pharmaceutical Biotechnology, 16, 716–723.
 
No related articles found!
No Suggested Reading articles found!