Please wait a minute...
Journal of Integrative Agriculture  2017, Vol. 16 Issue (12): 2784-2791    DOI: 10.1016/S2095-3119(17)61780-5
Animal Science · Veterinary Medicine Advanced Online Publication | Current Issue | Archive | Adv Search |
Future livestock breeding: Precision breeding based on multi-omics information and population personalization
YANG Ya-lan*, ZHOU Rong*, LI Kui
Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China
Download:  PDF (241KB) ( )  
Export:  BibTeX | EndNote (RIS)      
Abstract  With the rapid development of molecular biology and related disciplines, animal breeding has moved from conventional breeding to molecular breeding.  Marker-assisted selection and genomic selection have become mainstream practices in molecular breeding of livestock.  However, these techniques only use information from genomic variation but not multi-omics information,  thus do not fully explain the molecular basis of phenotypic variations in complex traits.  In addition, the accuracy of breeding value estimation based on these techniques is occasionally controversial in different populations or varieties.  Given the rapid development of high-throughput sequencing techniques and functional genome and dramatic reductions in the overall cost of sequencing, it is possible to clarify the interactions between genes and formation of phenotypes using massive sets of omic-level data from studies of the transcriptome, proteome, epigenome, and metabolome.  During livestock breeding, multi-omics information regarding breeding populations and individuals should be taken into account.  The interactive regulatory networks governing gene regulation and phenotype formation in diverse livestock population, varieties and species should be analyzed.  In addition, a multi-omics regulatory breeding model should be constructed.  Precision, population-personalized breeding is expected to become a crucial practice in future livestock breeding.  Precision breeding of individuals can be achieved by combining population genomic information at multi-omics levels together with genomic selection and genome editing techniques.  
Keywords:  livestock breeding        multi-omics        population personalization  
Received: 29 March 2017   Accepted:
Fund: 

This work was supported by National High Technology Plan of China (2013 AA102502), the National Natural Science Foundation of China (313300453) and the National Key Basic Research Program of China (2015CB943101).

Corresponding Authors:  Correspondence LI Kui, E-mail: likui@caas.cn   

Cite this article: 

YANG Ya-lan, ZHOU Rong, LI Kui. 2017. Future livestock breeding: Precision breeding based on multi-omics information and population personalization. Journal of Integrative Agriculture, 16(12): 2784-2791.

Ai H, Fang X, Yang B, Huang Z, Chen H, Mao L, Zhang F, Zhang L, Cui L, He W. 2015. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics, 47, 217–225.

Bai L, Liang R, Yang Y, Hou X, Wang Z, Zhu S, Wang C, Tang Z, Li K. 2015. MicroRNA-21 regulates PI3K/Akt/mTOR signaling by targeting TGFβI during skeletal muscle development in pigs. PLoS ONE, 10, e0119396.

Bertram H, Karlsson A, Andersen H. 2003. The significance of cooling rate on water dynamics in porcine muscle from heterozygote carriers and non-carriers of the halothane gene - A low-field NMR relaxation study. Meat Science, 65, 1281–1291.

Califano A, Butte A J, Friend S, Ideker T, Schadt E. 2012. Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nature Genetics, 44, 841–847.

Couldrey C, Brauning R, Bracegirdle J, Maclean P, Henderson H, McEwan J. 2014. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle. PLoS ONE, 9, e101853.

Daetwyler H, Capitan A, Pausch H, Stothard P, Van Binsbergen R, Brøndum R, Liao X, Djari A, Rodriguez S, Grohs C, Esquerré D, Bouchez O, Rossignol M, Klopp C, Rocha D, Fritz S, Eggen A, Bowman P, Coote D, Chamberlain A, et al. 2014. Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle. Nature Genetics, 46, 858–865.

Dekkers J C M. 2004. Commercial application of marker-and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science, 82(Suppl. 13), E313–E328.

Do D, Strathe A, Ostersen T, Pant S, Kadarmideen H. 2014. Genome-wide association and pathway analysis of feed efficiency in pigs reveal candidate genes and pathways for residual feed intake. Frontiers in Genetics, 5, 307.

Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J, Chen W, Chen J, Zeng P, Hou Y, Bian C, Pan S, Li Y, Liu X, Wang W, Servin B, et al. 2013. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nature Biotechnology, 31, 135–141.

Fortes M, Reverter A, Nagaraj S H, Zhang Y, Jonsson N, Barris W, Lehnert S, Boe-Hansen G, Hawken R. 2011. A single nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 tropical breeds of beef cattle. Journal of Animal Science, 89, 1669–1683.

García-Gámez E, Reverter A, Whan V, Mcwilliam S, Arranz J, Kijas J. 2011. Using regulatory and epistatic networks to extend the findings of a genome scan: Identifying the gene drivers of pigmentation in merino sheep. PLoS ONE, 6, e21158.

Goddard M E, Hayes B. 2007. Genomic selection. Journal of Animal Breeding and Genetics, 124, 323–330.

Grobet L, Martin L J, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nature Genetics, 17, 71–74.

Groenen M A, Archibald A L, Uenishi H, Tuggle C K, Takeuchi Y, Rothschild M F, Rogel-Gaillard C, Park C, Milan D, Megens H J, Li S, Larkin D M, Kim H, Frantz L A, Caccamo M, Ahn H, Aken B L, Anselmo A, Anthon C, Auvil L, et al. 2012. Analyses of pig genomes provide insight into porcine demography and evolution. Nature. 491, 393–398.

Hamburg M, Collins F. 2010. The path to personalized medicine. New England Journal of Medicine, 363, 301–304.

Hartung F, Schiemann J. 2014. Precise plant breeding using new genome editing techniques: Opportunities, safety and regulation in the EU. The Plant Journal, 78, 742–752.

Hayes B, Bowman P, Chamberlain A, Goddard M. 2009. Invited review: Genomic selection in dairy cattle: Progress and challenges. Journal of Dairy Science, 92, 433–443.

Hayes B, Lewin H, Goddard M. 2013. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics, 29, 206–214.

He Y, Yu Y, Zhang Y, Song J, Mitra A, Zhang Y, Wang Y, Sun D, Zhang S. 2012. Genome-wide bovine H3K27me3 modifications and the regulatory effects on genes expressions in peripheral blood lymphocytes. PLoS ONE, 7, e39094.

Hou X, Tang Z, Liu H, Wang N, Ju H, Li K. 2012. Discovery of microRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs. PLoS ONE, 7, e52123.

Hou X, Yang Y, Zhu S, Hua C, Zhou R, Mu Y, Tang Z, Li K. 2016. Comparison of skeletal muscle miRNA and mRNA profiles among three pig breeds. Molecular Genetics and Genomics, 291, 559–573.

Huang Y, Sun J, Zhang L, Li C, Womack J, Li Z, Lan X, Lei C, Zhang C, Zhao X, Chen H. 2014. Genome-wide DNA methylation profiles and their relationships with mRNA and the microRNA transcriptome in bovine muscle tissue (Bos taurine). Scientific Reports, 4, 6546.

Ibáñez-Escriche N, Forni S, Noguera J L, Varona L. 2014. Genomic information in pig breeding: Science meets industry needs. Livestock Science, 166, 94–100.

Jiang Y, Xie M, Chen W, Talbot R, Maddox J F, Faraut T, Wu C, Muzny D M, Li Y, Zhang W, Stanton J A, Brauning R, Barris W C, Hourlier T, Aken B L, Searle S M J, Adelson D L, Bian C, Cam G R, Chen Y, et al. 2014. The sheep genome illuminates biology of the rumen and lipid metabolism. Science, 344, 1168–1173.

Lande R. 1981. Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences of the United States of America, 78, 3721–3725.

Li A, Mo D, Zhao X, Jiang W, Cong P, He Z, Xiao S, Liu X, Chen Y. 2013. Comparison of the longissimus muscle proteome between obese and lean pigs at 180 days. Mammalian Genome, 24, 72–79.

Li M, Tian S, Jin L, Zhou G, Li Y, Zhang Y, Wang T, Yeung C K, Chen L, Ma J, Zhang J, Jiang A, Li J, Zhou C, Zhang J, Liu Y, Sun X, Zhao H, Niu Z, Lou P, et al. 2013. Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics, 45, 1431–1438.

Li M, Wu H, Luo Z, Xia Y, Guan J, Wang T, Gu Y, Chen L, Zhang K, Ma J, Liu Y, Zhong Z, Nie J, Zhou S, Mu Z, Wang X, Qu J, Jing L, Wang H, Huang S, et al. 2012. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nature Communications, 3, 850.

Lund M S, Su G, Janss L, Guldbrandtsen B, Brøndum R F. 2014. Genomic evaluation of cattle in a multi-breed context. Livestock Science, 166, 101–110.

Lynch M, Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Sunderland, MA.

Marino R, Albenzio M, Della Malva A, Caroprese M, Santillo A, Sevi A. 2014. Changes in meat quality traits and sarcoplasmic proteins during aging in three different cattle breeds. Meat Science, 98, 178–186.

Meuwissen T, Hayes B, Goddard M. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819–1829.

Proudfoot C, Carlson D, Huddart R, Long C, Pryor J, King T, Lillico S, Mileham A, Mclaren D, Whitelaw C. 2015. Genome edited sheep and cattle. Transgenic Research, 24, 147–153.

Pryce J, Daetwyler H. 2012. Designing dairy cattle breeding schemes under genomic selection: A review of international research. Animal Production Science, 52, 107–114.

Qian L, Tang M, Yang J, Wang Q, Cai C, Jiang S, Li H, Jiang K, Gao P, Ma D, Chen Y, An X, Li K, Cui W. 2015. Targeted mutations in myostatin by zinc-finger nucleases result in double-muscled phenotype in Meishan pigs. Scientific Reports, 5, 14435.

Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castelló A, Ballester M, Estellé J, Ibáñez-Escriche N, Fernández A, Pérez-Enciso M, Folch J. 2012. Liver transcriptome profile in pigs with extreme phenotypes of intramuscular fatty acid composition. BMC Genomics, 13, 547.

Ran F, Hsu P, Lin C, Gootenberg J, Konermann S, Trevino A, Scott D, Inoue A, Matoba S, Zhang Y, Zhang F. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389.

Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R, Liu Z, Mu Y, Yang S, Ouyang H, Chen-Tsai R, Li K. 2015. Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific Reports, 5, 14253.

Sanyal A, Lajoie B R, Jain G, Dekker J. 2012. The long-range interaction landscape of gene promoters. Nature, 489, 109–113.

Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. 2007. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biology, 8, R115.

Tang Z, Wu Y, Yang Y, Yang Y, Wang Z, Yuan J, Yang Y, Hua C, Fan X, Niu G, Zhang Y, Lu Z, Li K. 2017. Comprehensive analysis of long non-coding RNAs highlights their spatio-temporal expression patterns and evolutional conservation in Sus scrofa. Scientific Reports, 7, 43166.

Tang Z, Yang Y, Wang Z, Zhao S, Mu Y, Li K. 2015. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Scientific Reports, 5, 15544.

van der Werf J. 2013. Genomic selection in animal breeding programs. In: Gondro C, van der Werf J, Hayes B, eds., Genome-Wide Association Studies and Genomic Prediction. vol. 1019. Methods in Molecular Biology (Methods and Protocols). Humana Press, Totowa, NJ.

Yang Y, Liang G, Niu G, Zhang Y, Zhou R, Wang Y, Mu Y, Tang Z, Li K. 2017. Comparative analysis of DNA methylome and transcriptome of skeletal muscle in lean-, obese-, and mini-type pigs. Scientific Reports, 7, 39883.

Yang Y, Zhou R, Mu Y, Hou X, Tang Z, Li K. 2016. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds. Scientific Reports, 6, 30160.

Zhao W, Mu Y, Ma L, Wang C, Tang Z, Yang S, Zhou R, Hu X, Li M H, Li K. 2015. Systematic identification and characterization of long intergenic non-coding RNAs in fetal porcine skeletal muscle development. Scientific Reports, 5, 8957.
No related articles found!
No Suggested Reading articles found!