期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 生防菌深绿木霉T23对敌敌畏的降解作用
SUN Jia-nan, SI Gao-yue, LIU Hong-yi, LI Ya-qian, WANG Xin-hua, CHEN Jie
Journal of Integrative Agriculture    2023, 22 (9): 2746-2758.   DOI: 10.1016/j.jia.2023.01.009
摘要180)      PDF    收藏

工农业生产中有机磷杀虫剂敌敌畏的大量使用对人类健康和环境生态安全构成了威胁。微生物降解有机磷农药残留是生物修复环境的重要途径。前期工作表明:木霉作为生防菌同时可以用来降解环境中的化学农药,但亟需阐明木霉降解敌敌畏的作用机制。试验表明:深绿木霉T23对敌敌畏的降解能力取决于敌敌畏的初始诱导作用、培养基养分和pH值的变化。敌敌畏胁迫下T23产生的不同初级和次生代谢产物可以为菌株提供能量和作为抗氧化剂来耐受敌敌畏的胁迫。结果表明:深绿木霉T23可以产生大量的胞内酶降解敌敌畏,T23产生的胞内酶活性随着时间、初始敌敌畏浓度、培养基中硫酸铵和磷酸盐含量的变化而变化。研究阐明了敌敌畏诱导的生防深绿木霉T23降解敌敌畏的酶动力学特点和作用机理,为环境中有机磷农药残留的微生物降解提供了理论依据。

参考文献 | 相关文章 | 多维度评价
2. 不同组织、品种和种植地点对大豆内生微生物群落的影响
YANG Hong-jun, YE Wen-wu, YU Ze, SHEN Wei-liang, LI Su-zhen, WANG Xing, CHEN Jia-jia, WANG Yuan-chao, ZHENG Xiao-bo
Journal of Integrative Agriculture    2023, 22 (8): 2412-2425.   DOI: 10.1016/j.jia.2023.01.006
摘要281)      PDF    收藏
内生微生物可以帮助植物获得营养物质,抑制病原菌等生物和非生物胁迫,是影响植物生长、营养和健康的关键因素之一;然而,对于田间条件下存在于大豆不同组织中的细菌和真菌微生物群落的组成及影响因素,仍缺乏足够的了解。本研究以大豆为研究对象,对16S rRNA和ITS特定区段的PCR扩增子进行高通量测序,探究不同组织(根、茎、叶和荚)、不同品种(安豆203、荷豆12、山宁16和中黄13)以及不同地理位置(济宁、宿州和徐州)对大豆内生细菌和真菌群落组成及多样性的影响。结果表明,不同组织之间的内生微生物群落差异明显,根部内生细菌和真菌群落的组成及多样性显著区分于地上部的茎、叶和荚;供试品种间茎部的细菌群落和叶部的真菌群落组成差异最大;试验地点显著影响各个器官中的细菌群落组成,其中对根茎部的影响比叶荚部更强,而对于真菌群落组成,茎叶部所受影响比根荚部更明显。此外,与大豆病害相关的微生物丰度在不同组织和品种间存在差异(如:镰刀菌在根部丰度更高,而链格孢菌在叶部丰度更高),可能与这些微生物在寄主中的生态位以及寄主的抗感性有关。微生物群落组成与多样性的系统分析将有助于植物保护技术的发展,从而有益于大豆健康。
参考文献 | 相关文章 | 多维度评价
3. 水分缓解玉米灌浆期高温对光合作用影响的田间研究
WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu
Journal of Integrative Agriculture    2023, 22 (8): 2370-2383.   DOI: 10.1016/j.jia.2023.02.012
摘要246)      PDF    收藏

通过灌溉提高土壤含水量(SWC)是一种潜在、有效的缓解高温胁迫的调控措施。在提高土壤含水量缓解高温影响的过程中,田间条件下基于叶绿素荧光的光合特性响应受到了有限的关注。本研究在华北平原开展了2年田间试验(2019-2020年),以郑单958ZD958)和先玉335XY335)为材料,在灌浆期设置三个试验处理(正常生长条件(CK)、大田升温(H)和大田升温+水分调控(HW))研究田间高温对玉米冠层光合的影响及水分调控效应。与H处理相比,HW处理下冠层温度降低1-3℃,净光合速率(Pn)提高20%此外,HW处理显著提高了两个品种的实际光合速率(Phi2)、线性电子流(LEF)、可变荧光(Fv)和最大光能转换效率(Fv/Fm)。同时,发现两个品种对叶绿素荧光的响应存在差异。HW处理显著提高了ZD958的类囊体质子电导率(gH+)和最大荧光(Fm),提高了XY335的叶绿体ATP合酶质子电导率(vH+)和最小荧光(F0)。结构方程分析进一步表明,土壤水分含量与PnLEFFv/Fm呈显著正相关。提高土壤水分含量可通过延缓叶片衰老,延长光合作用有效时间,改善Phi2LEFFvFv/Fm,提高叶片光合能力。综合本研究结果表明,提高SWC以增强灌浆期叶片光合作用,玉米生产中适应气候变暖的一重要技术措施

参考文献 | 相关文章 | 多维度评价
4. JIA-2022-0087 膜侧播种——一种传统地膜覆盖的替代技术,提高半干旱地区玉米产量稳定性和经济效益
ZHANG Bing-chao, HU Han, GUO Zheng-yu, GONG Shuai, SHEN Si, LIAO Shu-hua, WANG Xi, ZHOU Shun-li, ZHANG Zhong-dong
Journal of Integrative Agriculture    2023, 22 (4): 1021-1034.   DOI: 10.1016/j.jia.2022.08.017
摘要356)      PDF    收藏

膜下栽培具有保水和增温效果,因而地区春玉米生产中被广泛应用。为了解决春玉米生产中地膜残留和膜下播种“放苗”环节耗费力的问题,我们研发了一种膜侧播种(PSS)技术配套了作业机械。在国西北半干旱地区7年的试验结果表明,与传统膜下播种(PM)相比,PSS每公顷增加6547株有效植株,增产1686公斤。为了进一步探究PSS(i)土壤水分和温度,(ii)玉米生长发育、产量、水利用效率(WUE以及(iii)经济收入和地膜残留的影响,我们在半干旱地区两个点进行了为期两年的试验。土壤温湿度连续监测结果表明,与露地平作(CK)相比,PSS显著提高了玉米生长早期播种带0-20厘米土壤的温度和湿度,提高了籽粒产量(884-1089千克/公顷)和水分利用效率,其效应与PM类似。在经济效益上,PSS的人工投入与CK相当,而PM在释放地膜下的幼苗时需要额外花费960/公顷的人工。总体而言,与CKPM相比,PSS分别增加了5.83%547/公顷)和8.16%748/公顷)的经济收益。在环境方面,PSS实现了近100%的残膜回收,相比之下,连续PM处理3和5,因回收困难没有采取地膜回收的田块分别有96与130千克/公顷残膜残留综上所述,我们认为PSS是一种可以提高产量稳定性和收入实现半干旱地区玉米的可持续生产的生态友好型技术。

参考文献 | 相关文章 | 多维度评价
5. JIA-2022-0113 华中地区双季稻双直播模式下超短生育期品种在不同氮肥和密度下的农艺表现
WANG Xin-yu, YANG Guo-dong, XU Le, XIANG Hong-shun, YANG Chen, WANG Fei, PENG Shao-bing
Journal of Integrative Agriculture    2023, 22 (4): 1009-1020.   DOI: 10.1016/j.jia.2022.08.019
摘要277)      PDF    收藏

氮肥和密度是影响水稻产量和资源利用效率的重要因素通过合理调控密度可以在不减产的前提下降低氮肥投入并提高氮肥利用效率。不过,对于传统的移栽稻模式,增加种植密度意味着需要投入更多的劳动力。在当前农村劳动力短缺的背景下,这种措施无疑会加剧劳动力的供需矛盾。双季稻双直播模式是一种省工、节本的轻简化栽培措施,在该模式下调整播种密度简单易行。然而,目前关于不同氮肥密度调控对双季稻双直播模式下超短生育期品种的产量和氮肥利用效率的影响尚不明确。因此,本研究旨在揭示氮肥和密度对产量氮肥利用效率的影响,并探明这些影响在早、晚季之间的差异大田试验20182019年分别在湖北省武穴市和蕲春县进行,设置四个氮肥和三个播种密度处理,选用超短生育期水稻品种湘早籼6号为供试材料。结果表明,在施氮处理下,早、晚稻生育期和产量的变化范围分别为85-97天和6.32-8.23 t ha-1水稻产量对氮肥的响应高于对播种密度的响应。早、晚稻的最适施氮量分别为100-150 kg N ha-170-120 kg N ha-1。此外,在双季稻双直播模式中,早稻产量对氮肥的响应比晚稻更大,这主要由于稻土壤背景氮的供应能力低于晚稻。因此,考虑早、晚季间土壤背景氮供应能力的差异对于优化双季稻双直播模式的氮肥管理策略、提高氮肥利用效率有重要的意义。

参考文献 | 相关文章 | 多维度评价
6. JIA-2021-1999 棉花品种选育弱化了菌根共生体
WANG Xin-xin, ZHANG Min, SHENG Jian-dong, FENG Gu, Thomas W. KUYPER
Journal of Integrative Agriculture    2023, 22 (3): 701-715.   DOI: 10.1016/j.jia.2022.08.004
摘要276)      PDF    收藏

棉花Gossypium hirsutum L.)是一种重要的纤维经济作物,以往于棉花获取磷(P)相关的根系性状(包括菌根根系性状)的研究较少。我们采用1950年至2013年在中国西北地区使用8个棉花品种在3种磷供应水平下分别为050300 mg KH2PO4 kg-1研究了接种或者不接种丛枝菌根真菌Funneliformis mosseae棉花的生长和11根系性状特征结果表明:与老品种相比,新品种的根系直径更细,地上部吸收的磷更少,苗期生物量更低这表明育种过程选择了更细的根系,菌根真菌定殖的皮层空间更少因而增加了对供磷强度的更高需求。在两个低磷水平下,菌根植物比非菌根植物吸收更多的磷,产生更多的生物量P0时,3.2 mg对0.9 mg1.8 g对0.9 g;P50时,14.5 mg对1.7 mg4.7 g对1.6 g)。在最高磷水平下,菌根植物比非菌根植物获得更多的磷(18.8 mg13.4 mg ),但生物量没有差异(6.2 g对6.3 g)。在中等P50水平下,根直径与菌根植物地上部生物量、磷浓度和磷含量呈显著正相关。我们的结果支持了植物获取磷的外包模式(借助菌根途径)在根经济学空间框架中的重要性。在过去的几十年里,育种使得棉花的根系更细菌根途径获益更低,这导致了在中等磷供应并有菌根侵染条件下,老品种的生物量显著大于新品种的生物量。未来棉花品种选育策略要考虑到在根系自身吸收磷的能力发挥菌根吸磷能力之间的权衡(即根系性状与菌根性状的权衡),以便选育出中等投入条件下实现高产的品种

参考文献 | 相关文章 | 多维度评价
7. JIA-2021-0551 华中地区双季稻双直播模式下超短生育期水稻品种产量与抗倒性表现
WANG Xin-yu, XU Le, LI Xiao-xiao, YANG Guo-dong, WANG Fei, PENG Shao-bing
Journal of Integrative Agriculture    2022, 21 (10): 2888-2899.   DOI: 10.1016/j.jia.2022.07.035
摘要204)      PDF    收藏
双季稻双直播模式是一种省工、节本的轻简化栽培措施,可有效应对当前双季稻种植面积逐年下降的现状。华中地区温光资源有限,双季稻双直播模式必须选用生育期在95天左右的超短生育期品种才能保障安全生产。此外,因直播稻群体密度大、扎根浅,在实际生产中往往面临着倒伏风险高的问题。然而,目前关于超短生育期水稻品种在双季稻双直播模式下的抗倒性表现和抗倒性提高途径尚不明确。因此,本研究旨在揭示华中地区双季稻双直播模式下超短生育期水稻品种的抗倒机理。田间试验于2017-2018年在湖北省武穴市进行,设置高、低两个氮肥水平,选用四个超短生育期水稻品种为供试材料,于齐穗后15天测定倒伏相关性状。结果表明,超短生育期水稻品种在两个氮水平下的生育期和产量的变异范围分别为85-97天和4.59-7.61 t ha-1。在该产量水平下,弯曲力矩是造成氮肥处理和品种间倒伏指数差异的主要原因,而抗折力及其他茎秆形态指标并未显著影响倒伏指数。弯曲力矩主要受株高的影响,超短生育期水稻品种的株高从95.4 cm降低至80.5 cm,弯曲力矩降低32.0%,倒伏指数降低22.4%,但是产量没有显著降低。因此,在目前的产量水平下,降低超短生育期品种株高是提高双季稻双直播模式抗倒性的有效措施。但是在未来超短生育期品种产量潜力进一步提升的进程中,育种家们更应该关注增强茎秆抗折力,以进一步提高双季稻双直播模式的产量和稳产性。
参考文献 | 相关文章 | 多维度评价
8. JIA-2021-0532 利用STTM技术抑制miR397提高甘薯对SPVD的抗性
LI Chen, LIU Xuan-xuan, ABOUELNASR Hesham, MOHAMED HAMED Arisha, KOU Meng, TANG Wei, YAN Hui, WANG Xin, WANG Xiao-xiao, ZHANG Yun-gang, LIU Ya-ju, GAO Run-fei, MA Meng, LI Qiang
Journal of Integrative Agriculture    2022, 21 (10): 2865-2875.   DOI: 10.1016/j.jia.2022.07.054
摘要203)      PDF    收藏
甘薯(Ipomoea batatas (L.) Lam.)作为一种重要的杂粮作物,在世界各地广泛种植,但深受甘薯病毒病(SPVD)的影响。本研究利用短串联靶标模拟物(STTM)成功抑制甘薯miR397的表达,上调其靶基因漆酶(IbLACs)的表达,使木质素合成途径的上游基因,包括苯丙氨酸解氨酶(PAL)、4-香豆酸辅酶A连接酶(4CL)、羟基肉桂酰CoA:莽草酸/奎宁酸羟基肉桂酰转移酶(HTC)、咖啡酸O-甲基转移酶(COMT)、肉桂醇脱氢酶(CAD)等基因被反馈调控而广泛上调表达。同时,导致PAL和LAC的酶活性显著增加,促进木质素的合成与积累。木质素在细胞壁中的沉积增加了转基因甘薯植株的物理防御能力,有效减少了烟粉虱对SPVD的传播,保证甘薯的健康生长。本研究为甘薯抗病育种和绿色生产提供了新思路。
参考文献 | 相关文章 | 多维度评价
9. Detection of arboviruses in Culicoides (Diptera: Ceratopogonidae) collected from animal farms in the border areas of Yunnan Province, China
DI Di, LI Chen-xi, LI Zong-jie, WANG Xin, XIA Qi-qi, Mona SHARMA, LI Bei-bei, LIU Ke, SHAO Dong-hua, QIU Ya-feng, Soe-Soe WAI, YANG Shi-biao, WEI Jian-chao, MA Zhi-yong
Journal of Integrative Agriculture    2021, 20 (9): 2491-2501.   DOI: 10.1016/S2095-3119(21)63613-4
摘要162)      PDF    收藏

本研究对云南省边境地区5个县的7个养殖场库蠓的种类、丰度及携带的虫媒病毒进行了调查,结果表明,共采集到7个不同种的库蠓405只,具体丰度为: 荒川库蠓 (5.43%,22/405),原野库蠓 (1.23%,5/405),不显库蠓 (19.75%,80/405),东方库蠓 (17.28%,70/405),尖喙库蠓 (29.38%,119/405),异域库蠓 (5.68%,23/405) 和日本库蠓 (21.23%,86/405)。其中,尖喙库蠓和日本库蠓的丰度分别为13.33%-44.87%和10.00%-46.83%,表明它们是边境地区养殖场中优势库蠓。采用PCR对采集的库蠓样品进行了蓝舌病毒、流行性乙型脑炎病毒、登革病毒、寨卡病毒、非洲猪瘟病毒和非洲马瘟病毒等主要虫媒病毒进行了检测,仅在云南腾冲县一个水牛养殖场采集的丰度最高的尖喙库蠓中检测出BTV-1,国内尚未发现相关报道。上述结果表明,尖喙库蠓可能是这些边境地区BTV传播的重要媒介,这尚待进一步的研究证实。总体而言,本研究调查了中越缅三国边境地区养殖场库蠓种类及库蠓携带虫媒病毒的情况,为我国边境地区库蠓与BTV防控提供了基础数据。


参考文献 | 相关文章 | 多维度评价
10. Preharvest application of melatonin induces anthocyanin accumulation and related gene upregulation in red pear (Pyrus ussuriensis)
SUN Hui-li, WANG Xin-yue, SHANG Ye, WANG Xiao-qian, DU Guo-dong, LÜ De-guo
Journal of Integrative Agriculture    2021, 20 (8): 2126-2137.   DOI: 10.1016/S2095-3119(20)63312-3
摘要200)      PDF    收藏

花青素是决定梨果皮颜色的重要成分。研究发现褪黑素可以影响花青素代谢,但褪黑素采前处理对果实着色的作用尚不清楚。本试验以‘南红梨’为材料,研究了50、200 μM褪黑素采前喷施梨果实,对果皮着色、酚类物质含量及相关基因表达的影响。结果表明,褪黑素采前喷施可以显著影响梨果实着色,提高果皮中花青素和黄酮醇的含量,降低羟基肉桂酸和黄烷醇的含量,同时增加多数花青素合成基因和相关转录因子的相对表达量。此外,外源褪黑素处理促进了褪黑素合成相关基因的表达,从而增加果皮中内源褪黑素的含量。试验结果为探索褪黑素调控果实花青素代谢提供了新的思路,并有助于外源褪黑素在农业上的应用。


参考文献 | 相关文章 | 多维度评价
11. Monilinia fructicola on loquat: An old pathogen invading a new host
YIN Liang-fen, ZHANG Shu-qin, DU Juan, WANG Xin-yu, XU Wen-xing, LUO Chao-xi
Journal of Integrative Agriculture    2021, 20 (7): 2009-2014.   DOI: 10.1016/S2095-3119(20)63375-5
摘要128)      PDF    收藏

链核盘菌属真菌美澳型核果链核盘菌Monilinia fructicola是世界上许多蔷薇科果树褐腐病的病原菌。其已被报道可广泛侵染核果类果树,如桃、李、樱桃、杏和梅,仁果类果树,如苹果、梨和山楂等。枇杷虽然和苹果、梨、山楂等都属于苹果亚科枇杷属植物,但到目前为止,还没有枇杷是任何链核盘菌属真菌的寄主的相关报道。2019年6月,我们在湖北武汉的一个果园里观察到枇杷果实发生褐腐病。经过对病样进行采集,从中共获得了30个单孢菌株。通过对病菌形态特征观察结合分子生物学分析,将枇杷褐腐病的病原菌鉴定为M. fructicola。这是世界上首次报道由链核盘菌引起的枇杷褐腐病。此外,通过人工接种,我国桃褐腐病菌的三个种M. fructicolaMonilia mumecolaMonilia yunnanensis均可以在枇杷果实上形成典型的褐腐病。同时,在对桃果实进行致病性试验时,从枇杷中分离的M. fructicola和桃分离的M. fructicola表现出相当的致病力,预示在实际生产中枇杷可能被其它链核盘菌侵染,同时枇杷上的链核盘菌也可能对其它蔷薇科果树造成危害。


参考文献 | 相关文章 | 多维度评价
12. Giving maize an excited start – Effects of dopamine on maize germination
CHENG Hang-yuan, WANG Xing, FENG Tian-yu, PENG Chuan-xi, WANG Wei, YANG Mu-yu, ZHOU Yu-yi
Journal of Integrative Agriculture    2020, 19 (11): 2690-2698.   DOI: 10.1016/S2095-3119(20)63252-X
摘要127)      PDF    收藏
Dopamine (DA) is a neurotransmitter which takes charge of brain activities about memory and self-stimulation behavior in animals.  Interestingly, our results suggest that DA could also give maize an “excited state”.  The results showed that 1  mmol L–1 DA promoted maize germination by 23.2% significantly, and accelerated the growth rate of roots and shoots by 21.4 and 24.7%, respectively.  As we all known, abscisic acid (ABA) is the key hormone involved in seed dormancy.  In our research, ABA levels in roots and shoots dramatically decreased by 16.45 and 57.57%, respectively.  To further investigate how DA reduces the ABA level in budding seed, we studied ABA synthesis and catabolism pathway.  Specific expression of key ABA-synthesis genes, such as ZmNCED1, ZmNCED3 and ZmZEP were down-regulated by DA.  Simultaneously, the expression levels of ABA8OX1a and ABA8OX1b which are major transcripts of ABA 8´-hydroxylase in ABA catabolism were up-regulated at least 1.5- and 4.6-fold, respectively.  Our results enriched the functions of animal hormones in plants.
参考文献 | 相关文章 | 多维度评价
13. Screening of antagonistic Trichoderma strains and their application for controlling stalk rot in maize 
LU Zhi-xiang, TU Guang-ping, ZHANG Ting, LI Ya-qian, WANG Xin-hua, Zhang Quan-guo, SONG Wei, CHEN Jie
Journal of Integrative Agriculture    2020, 19 (1): 145-152.   DOI: 10.1016/S2095-3119(19)62734-6
摘要181)      PDF    收藏
Maize is one of the major crops in China, but maize stalk rot occurs nationwide and has become one of the major challenges in maize production in China.  In order to find an environment-friendly and feasible technology to control this disease, a Trichoderma-based biocontrol agent was selected.  Forty-eight strains with various inhibition activities to Fusarium graminearum, and Fusarium verticillioides were tested.  A group of Trichoderma strains (DLY31, SG3403, DLY1303 and GDFS1009) were found to provide an inhibition rate to pathogen growth in vitro of over 70%.  These strains also prevented pathogen infection over 65% and promoted the maize seedling growth for the main root in vivo by over 50%.  Due to its advantage in antifungal activity against pathogens and promotion activity to maize, Trichoderma asperellum GDSF1009 was selected as the most promising strain of the biocontrol agent in the Trichoderma spectrum.  Pot experiments showed that the Trichoderma agent at 2–3 g/pot could achieve the best control of seedling stalk rot and promotion of maize seedling growth.  In the field experiments, 8–10 g/hole was able to achieve over 65% control to stalk rot, and yield increased by 2–11%.  In the case of natural morbidity, the control efficiency ranged from 27.23 to 48.84%, and the rate of yield increase reached 11.70%, with a dosage of Trichoderma granules at 75 kg ha–1.  Based on these results, we concluded that the Trichoderma agent is a promising biocontrol approach to stalk rot in maize.
参考文献 | 相关文章 | 多维度评价
14. Combined application of Trichoderma harzianum SH2303 and difenoconazole-propiconazolein controlling Southern corn leaf blight disease caused by Cochliobolus heterostrophus in maize
WANG Shao-qing, MA Jia, WANG Meng, WANG Xin-hua, LI Ya-qian, CHEN Jie
Journal of Integrative Agriculture    2019, 18 (9): 2063-2071.   DOI: 10.1016/S2095-3119(19)62603-1
摘要165)      PDF    收藏
Southern corn leaf blight (SCLB) disease caused by Cochliobolus heterostrophus is one of the major threats to corn production worldwide.  The synergistic application of low toxic chemical fungicide and biocontrol agents could improve biocontrol stability and efficiency against plant diseases, which ultimately reduce use of chemical fungicide.  Trichoderma spp., well-known biocontrol fungi have been used to control some foliar diseases.  However, few works have been reported on synergistic application of chemical fungicide and Trichoderma against foliar diseases.  This study was aimed to investigate the control effect on the synergistic application of Trichoderma harzianum SH2303 and difenoconazole-propiconazole (DP) against SCLB.  Results showed that the synergistic application of DP and SH2303 reduced the leaf spot area compared to the control.  The efficacy of synergistic application of DP+SH2303 against SCLB could last for 15–20 d in pot trial under the greenhouse condition.  Under the natural field condition, maize treated with DP+DP and DP+SH2303 showed 60% control, which was higher than that of SH2303+DP (45%) and SH2303+SH2303 (35%).  All these treatments induced the synthesis of defense-related enzymes (phenylalanine ammonia lyase (PAL), catalase (CAT), and superoxide dismutase (SOD)) and the defence-related gene expression of SA pathway (PR1).  Taken together the in-vitro leaf test and field trial, the control of SCLB by synergistic application of DP+SH2303 was similar to that of DP+DP.  Among synergistic application, the sequential application of DP+SH2303 showed better control than the sequential application of SH2303+DP.  It was concluded that the synergistic application of chemical fungicide (DP) and biocontrol agent (T. harzianum SH2303) could be used to reduce the chemical fungicide and to reduce the SCLB diseases in maize, which provided alternative approach to realize an eco-friendly controlling of the foliar disease.
参考文献 | 相关文章 | 多维度评价
15. Soil application of Trichoderma asperellum GDFS1009 granules promotes growth and resistance to Fusarium graminearum in maize
HE An-le, LIU Jia, WANG Xin-hua, ZHANG Quan-guo, SONG Wei, CHEN Jie
Journal of Integrative Agriculture    2019, 18 (3): 599-607.   DOI: 10.1016/S2095-3119(18)62089-1
摘要217)      PDF(pc) (945KB)(226)    收藏
Of diseases affecting maize (Zea mays), Fusarium graminearum is one of the most common pathogenic fungi that cause stalk rot.  In the present study, the Trichoderma asperellum GDFS1009 strain was shown to be an effective biocontrol agent against stalk rot.  In a confrontation culture test, Trichoderma strain displayed an approximately 60% inhibition rate on the mycelial growth of F. graminearum.  In pot trials, the application of 2 g/pot of T. asperellum GDFS1009 granules had the best control effect on stalk rot at the seedling stage (up to 53.7%), while the average plant height and fresh weight were also significantly improved.  Additionally when fertilizer was added at 8 g/pot, the application of 3 g/pot of Trichoderma granules had the best control effect on maize stalk rot (40.95%).  In field trials, when inoculating F. graminearum alone, the disease index for inoculating was 62.45, but only 31.43 after treatment with T. asperellum GDFS1009 granules, suggesting a control efficiency of 49.67%.  Furthermore, in a naturally F. graminearum-infected field, Trichoderma granules, when applied for 3 consecutive years, showed significant control of stalk rot and increased yields.
 
参考文献 | 相关文章 | 多维度评价
16. Effects of Aschersonia aleyrodis on the life table and demographic parameters of Bemisia tabaci
ZHANG Can, SHAO Zhen-fang, HAN Yue-ye, WANG Xing-min, WANG Ze-qing, Peter Dennis Musa, QIU Bao-li, Shaukat Ali
Journal of Integrative Agriculture    2018, 17 (2): 389-396.   DOI: 10.1016/S2095-3119(17)61773-8
摘要732)      PDF    收藏
The present study reports the sublethal effects of the entomopathogenic fungus, Aschersonia aleyrodis (Webber) on Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae).  A fungal suspension of A. aleyrodis isolate Aa005 containing 1×107 conidia mL–1 was sprayed against B. tabaci on eggplant leaves under greenhouse conditions.  The effects of fungal application on survival as well as life table parameters of the whitefly were observed at different post inoculation periods.  The results indicated that A. aleyrodis can significantly affect the survival of 1st, 2nd, and 3rd nymphal instars of B. tabaci.  Developmental periods of different instar nymphs were not affected by fungal application.  A. aleyrodis spores persisted well and significantly affected the survivorship of young instar nymphs of B. tabaci at different post incubation periods.  Life table results suggested that A. aleyrodis has no impact on general fecundity and longevity of B. tabaci.  When the pathogen was exposed to the open environment and maintained for a relatively longer period, a reduction in the reproductive rate and intrinsic rate of increase was caused by the fungal spores, though the sublethal effects were not as good as the control treatment.  The results suggest that the ability of spores to suppress an increase in whitefly population persists well after incubation of spores to the external environment (up to 9 days).  
参考文献 | 相关文章 | 多维度评价
17. Association of host plant growth and weed occurrence with armyworm (Mythimna separata) damage in corn fields
ZHANG Kun-peng, YU Zhi-hao, JIANG Shi-xiong, SUN De-wen, HUI Jun-tao, ZHENG Yu-liang, LI Xiao-zhen, WANG Xing-yun, WU Jun-xiang
Journal of Integrative Agriculture    2018, 17 (07): 1538-1544.   DOI: 10.1016/S2095-3119(17)61857-4
摘要279)      PDF    收藏
To clarify association between armyworm (Mythimna separata) damage level and the corn growth and weed occurrence, we investigated corn plant height, stem diameter and vigor as well as weed coverage and biomass.  The investigations were conducted at three locations of Shaanxi Province, China which were suffered seriously from armyworm.  Significant correlations were found between the parameters analyzed.  At stunted corn growth and presence of plenty of weeds, the armyworm damage tended to be heavy; oppositely, when corn grew well and weed density were low, armyworm harm was the minimal.  Therefore, corn growing status and weed density can significantly affect armyworm damage level.  Our results imply that promoting corn growth and timely removal of weeds are conducive to reducing armyworm occurrence.
 
参考文献 | 相关文章 | 多维度评价
18. Genome-wide assessment of genetic diversity and fiber quality traits characterization in Gossypium hirsutum races
Kiflom Weldu Okubazghi, LI Xiao-na, CAI Xiao-yan, WANG Xing-xing, CHEN Hao-dong, ZHOU Zhong-li, WANG Chun-ying, WANG Yu-hong, LIU Fang, WANG Kun-bo
Journal of Integrative Agriculture    2017, 16 (11): 2402-2412.   DOI: 10.1016/S2095-3119(17)61671-X
摘要843)      PDF    收藏
Gossypium hirsutum races are believed to be potential reservoirs of desirable traits, which can play crucial roles to overcome the existing narrow genetic base of modern Upland cotton cultivars.  However, prior to utilizing the races in cotton improvement programs, understanding their genetic constitutions is needed.  Thus, this study used molecular and morphological techniques to characterize 110 G. hirsutum germplasm including 109 semi-wild accessions and one Upland cotton cultivar, CRI12.  In the study, 104 SSR markers detected 795 alleles, with an average of 7.64 alleles per marker, ranging from 3 to 14, and average polymorphism information content (PIC) value of 0.71.  And 96 of the markers were found to be highly informative, with PIC value≥0.50.  Pairwise genetic similarity coefficient across the accessions ranged from 0.19 to 1.00, with an average value of 0.46.  Morphological characterization was done using fiber length, fiber strength, micronaire, fiber uniformity index, and fiber elongation.  Pairwise taxonomic distance within the accessions ranged from 0.17 to 3.41, with a mean of 1.33.  The SSR and fiber quality traits data set based unweighted pair group method of arithmetic mean (UPGMA) analysis grouped the accessions into 7 and 12 distinct clusters, respectively, that corresponds well with the results of principal component analysis (PCA).  Our study revealed the existence of vast molecular and morphological diversities within the accessions and provided valuable information on each semi-wild accession for quick and better informed germplasm utilization in cotton breeding programs.   
参考文献 | 相关文章 | 多维度评价
19. Ipomoea batatas HKT1 transporter homolog mediates K+ and Na+ uptake in Saccharomyces cerevisiae
PARK Sung-chul, YU Yi-cheng, KOU Meng, YAN Hui, TANG Wei, WANG Xin, LIU Ya-ju, ZHANG Yun-gang, KWAK Sang-soo, MA Dai-fu, SUN Jian, LI Qiang
Journal of Integrative Agriculture    2017, 16 (10): 2168-2176.   DOI: 10.1016/S2095-3119(16)61570-8
摘要738)      PDF    收藏
Soil salinity causes the negative effects on the growth and yield of crops. In this study, two sweet potato (Ipomoea batatas L.) cultivars, Xushu 28 (X-28) and Okinawa 100 (O-100), were examined under 50 and 100 mmol L–1 NaCl stress. X-28 cultivar is relatively high salt tolerant than O-100 cultivar. Interestingly, real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that sweet potato high-affinity K+ transporter 1 (IbHKT1) gene expression was highly induced by 50 and 100 mmol L–1 NaCl stress in the stems of X-28 cultivar than in those of O-100 cultivar, but only slightly induced by these stresses in the leaves and fibrous roots in both cultivars. To characterize the function of IbHKT1 transporter, we performed ion-flux analysis in tobacco transient system and yeast complementation. Tobacco transient assay showed that IbHKT1 could uptake sodium (Na+). Yeast complementation assay showed that IbHKT1 could take up K+ in 50 mmol L–1 K+ medium without the presence of NaCl. Moreover, Na+ uptake significantly increased in yeast overexpressing IbHKT1. These results showed that IbHKT1 transporter could have K+-Na+ symport function in yeast. Therefore, the modes of action of IbHKT1 in transgenic yeast could differ from the mode of action of the other HKT1 transporters in class I. Potentially, IbHKT1 could be used to improve the salt tolerance nature in sweet potato.
参考文献 | 相关文章 | 多维度评价
20. Development of SNP markers using RNA-seq technology and tetra-primer ARMS-PCR in sweetpotato
KOU Meng, XU Jia-lei, LI Qiang, LIU Ya-ju, WANG Xin, TANG Wei, YAN Hui, ZHANG Yun-gang, MA Dai-fu
Journal of Integrative Agriculture    2017, 16 (02): 464-470.   DOI: 10.1016/S2095-3119(16)61405-3
摘要1224)      PDF    收藏
The information of single nucleotide polymorphisms (SNPs) is quite unknown in sweetpotato.  In this study, two sweetpotato varieties (Xushu 18 and Xu 781) were sequenced by Illumina technology, as well as de novo transcriptome assembly, functional annotation, and in silico discovery of potential SNP molecular markers.  Tetra-primer Amplification Refractory Mutation System PCR (ARMS-PCR) is a simple and sufficient method for detecting different alleles in SNP locus.  Total 153 sets of ARMS-PCR primers were designed to validate the putative SNPs from sequences.  PCR products from 103 sets of primers were different between Xu 781 and Xushu 18 via agarose gel electrophoresis, and the detection rate was 67.32%.  We obtained the expected results from 32 sets of primers between the two genotypes.  Furthermore, we ascertained the optimal annealing temperature of 32 sets of primers.  These SNPs might be used in genotyping, QTL mapping, or marker-assisted trait selection further in sweetpotato.  To our knowledge, this work was the first study to develop SNP markers in sweetpotato by using tetra-primer ARMS-PCR technique.  This method was a simple, rapid, and useful technique to develop SNP markers, and will provide a potential and preliminary application in discriminating cultivars in sweetpotato.
参考文献 | 相关文章 | 多维度评价
21. Accumulated chilling hours during endodormancy impact blooming and fruit shape development in peach (Prunus persica L.)
LI Yong, FANG Wei-chao, ZHU Geng-rui, CAO Ke, CHEN Chang-wen, WANG Xin-wei, WANG Li-rong
Journal of Integrative Agriculture    2016, 15 (06): 1267-1274.   DOI: 10.1016/S2095-3119(16)61374-6
摘要1114)      PDF    收藏
   Winter chill is essential for the growth and development of deciduous species. To understand the relationship between accumulated chilling hours during endodormancy and blooming and fruit shape development, we controlled chilling hours and investigated their effects on blooming date and fruit shape of peaches. The results showed that the number of days to full bloom date and the heat requirement for blooming were negatively correlated with accumulated chilling hours. Accumulated chilling hours were significantly negatively correlated with fruit shape index and fruit tip lengths, suggesting that the number of chilling hours affect the fruit shape development. Fewer accumulated chilling hours may be the major reason for longer fruit shape and protruding fruit tips. In conclusion, our results indicate specifically that decreased winter chilling hours can delay the bloom date and may lead to aberrant fruit shape development in peaches. Our study provides preliminary insights into the response of temperate fruit species to global climate change.
参考文献 | 相关文章 | 多维度评价
22. The cytochrome P450 superfamily: Key players in plant development and defense
XU Jun, WANG Xin-yu, GUO Wang-zhen
Journal of Integrative Agriculture    2015, 14 (9): 1673-1686.   DOI: 10.1016/S2095-3119(14)60980-1
摘要2802)      PDF    收藏
The cytochrome P450 (CYP) superfamily is the largest enzymatic protein family in plants, and it also widely exists in mammals, fungi, bacteria, insects and so on. Members of this superfamily are involved in multiple metabolic pathways with distinct and complex functions, playing important roles in a vast array of reactions. As a result, numerous secondary metabolites are synthesized that function as growth and developmental signals or protect plants from various biotic and abiotic stresses. Here, we summarize the characterization of CYPs, as well as their phylogenetic classification. We also focus on recent advances in elucidating the roles of CYPs in mediating plant growth and development as well as biotic and abiotic stresses responses, providing insights into their potential utilization in plant breeding.
参考文献 | 相关文章 | 多维度评价
23. Food safety regulatory systems in Europe and China: A study of how co-regulation can improve regulatory effectiveness
Kevin Chen, WANG Xin-xin, SONG Hai-ying
Journal of Integrative Agriculture    2015, 14 (11): 2203-2217.   DOI: 10.1016/S2095-3119(15)61113-3
摘要2325)      PDF    收藏
Food safety has received a great deal of attention in both developed and developing countries in recent years. In China, the numerous food scandals and scares that have struck over the past decade have spurred significant food safety regulatory reform, which has been increasingly oriented towards the public-private partnership model adopted by the Europe Union’s (EU) food safety regulatory system. This paper analyzes the development of both the EU’s and China’s food safety regulatory systems, identifies the current challenges for China and additionally considers the role of public-private partnership. The success of co-regulation in the food regulatory system would bring significant benefits and opportunities for China. Finally, this paper recommends additional measures like training and grants to improve the private’s sector effectiveness in co-regulating China’s food safety issues.
参考文献 | 相关文章 | 多维度评价
24. Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos
ZHANG Wei, WANG Xin-min, FAN Rong, YIN Gui-xiang, WANG Ke, DU Li-pu, XIAO Le-le, YE Xing-guo
Journal of Integrative Agriculture    2015, 14 (1): 11-19.   DOI: 10.1016/S2095-3119(14)60764-4
摘要1906)      PDF    收藏
The regeneration rate of wheat immature embryo varies among genotypes, howbeit many elite agriculture wheat varieties have low regeneration rates. Optimization of tissue culture conditions and attempts of adding signal molecules are effective ways to increase plant regeneration rate. Inter-culture is one of ways that have not been investigated in plant tissue culture. Moreover, the use of arabinogalactan proteins (AGPs) and hydrogen peroxide (H2O2) have been reported to increase regeneration rate in a few plant species other than wheat. The current research pioneeringly uses inter-culture of immature embryos of different wheat genotypes, and also investigates impacts of AGP and H2O2 on the induction of embryogenic calli and plant regeneration. As a result, high-frequency regeneration wheat cultivars Kenong 199 (KN199) and Xinchun 9 (XC9), together with low-frequency regeneration wheat line Chinese Spring (CS), presented striking increase in the induction of embryogenic calli and plant regeneration rate of CS through inter-culture strategy, up to 52.19 and 67.98%, respectively. Adding 50 to 200 mg L–1 AGP or 0.005 to 0.01 ‰ H2O2 to the callus induction medium, enhanced growth of embryogenic calli and plant regeneration rate in quite a few wheat genotypes. At 50 mg L–1 AGP application level in callus induction medium plant regeneration rates of 8.49, 409.06 and 283.16% were achieved for Jimai 22 (JM22), Jingdong 18 (JD18) and Yangmai 18 (YM18), respectively; whereas at 100 mg L–1 AGP level, CS (105.44%), Chuannong 16 (CN16) (80.60%) and Ningchun 4 (NC4) (62.87%) acted the best. Moreover CS (79.05%), JM22 (7.55%), CN16 (101.87%), YM18 (365.56%), Yangmai 20 (YM20) (10.48%), and CB301 (187.40%) were more responsive to 0.005 ‰ of H2O2, and NC4 (35.37%) obtained the highest shoot regeneration rates at 0.01 ‰ of H2O2. Overall, these two methods, inter-culture and AGP (or H2O2) application, can be further applied to wheat transgenic research.
参考文献 | 相关文章 | 多维度评价
25. Effects of Environmental Temperature on the Regeneration Frequency of the Immature Embryos of Wheat (Triticum aestivum L.)
WANG Xin-min; REN Xian; YIN Gui-xiang; WANG Ke; LI Jia-rui; DU Li-pu; XU Hui-jun
Journal of Integrative Agriculture    2014, 13 (4): 722-732.   DOI: 10.1016/S2095-3119(13)60361-5
摘要1789)      PDF    收藏
The immature embryos (IEs) of wheat are the most widely used tissues for in vitro culture and genetic transformation due to its high regeneration competency. However, this explant can only be maintained in 4°C daily cooler for a short period time for its use in plant tissue culture or transformation experiments. This study aimed to investigate the effects of environmental temperature, cryopreservation storage temperature, and heat shock culture (HSC) temperature on the regeneration frequency of wheat IEs. Results indicated that environmental temperature significantly affected the induction of embryonic calli. The optimum total accumulated temperature (TAT) during the time of anthesis and sampling for regeneration of these tissues was around 280°C for spring wheat type cv. CB037 and approximately 300°C for winter wheat type cv. Kenong 199. Regeneration ability obviously declined when the highest environmental temperature was over 35°C for 1 d or a high temperature between 30 and 33°C lasted for 5 d during anthesis and sampling. This finding was verified by culturing the freshly isolated IEs under different temperatures from 29 to 37°C in different controlled growth incubators for 5 d; the IEs almost completely lost regeneration ability when the temperature rose to 37°C. Cryopreservation of -20°C caused the wheat samples lost ability of producing callus or embryonic callus in a few days, and cryopreservation of -10°C more than 10 d made the regeneration potential of the tissues dramatically declined. Comparatively, the temperature that best maintained high regeneration ability was -5°C, at which the materials can be maintained for around 1 mon. In addition, the preservation of the immature samples at -5 or -10°C inhibited the direct germination of the IEs, avoiding the embryo axis removing process. Our results are useful for ensuring that field collection and cryopreservation of the wheat IEs are done correctly to enable tissue culture and genetic transformation.
参考文献 | 相关文章 | 多维度评价
26. Effect of Shading During Grain Filling on the Physicochemical Properties of Fresh Waxy Maize
LU Da-lei, SUN Xu-li, WANG Xin, YAN Fa-bao , LU Wei-ping
Journal of Integrative Agriculture    2013, 12 (9): 1560-1567.   DOI: 10.1016/S1671-2927(00)9071
摘要1381)      PDF    收藏
Grain physicochemical properties determine the table quality of fresh waxy maize. Two waxy maize varieties, Suyunuo 5 (shading tolerant) and FHN003 (shading sensitive), were used to estimate the effect of shading (plants received 30% less radiation than control) during grain filling (from 0 d to 23 d after pollination) on physicochemical properties of fresh waxy maize grain. Shading decreased the grain fresh weight of Suyunuo 5 and FHN003 by 8.4 and 19.1%, respectively. Shading increased the grain water content of FHN003, whereas that of Suyunuo 5 was not affected. In both varieties for shading treatment, soluble sugar, starch and protein contents were decreased, whereas zein content was increased. The changes in globulin, albumin and glutenin contents under shading were variety dependent. In both varieties, shading decreased λmax, iodine binding capacity and the percentage of large starch granules (diameter >17 μm) but increased crystallinity. The results of rapid visco analysis showed that the viscosity characteristics (except for pasting temperature) of both varieties were decreased by shading; however, FHN003 was more severely affected than Suyunuo 5. Under shading, ΔHret and %R were decreased in both varieties, whereas the changes in ΔHgel and transition temperatures were variety dependent. Hardness, cohesiveness and chewiness were decreased in both varieties. Significant differences in physicochemical characteristics were observed between the two varieties.
参考文献 | 相关文章 | 多维度评价
27. Characterization of Tomato Transcription Factor WUSCHEL and Functional Study in Arabidopsis
WANG Xiang, WANG Xin-guo, REN Jiang-ping, MA Ying, YIN Jun
Journal of Integrative Agriculture    2012, 12 (8): 1257-1265.   DOI: 10.1016/S1671-2927(00)8654
摘要1514)      PDF    收藏
The homeobox transcription factor WUSCHEL (WUS) plays a critical role in keeping the balance between the maintenance and differentiation of stem cell population in shoot and floral meristems of Arabidopsis thaliana. The corresponding gene SlWUS is yet to be characterized in tomato. In order to characterize SlWUS gene and its biological function, we cloned it from tomato and analyzed its structure. Tissue expression showed that the SlWUS highly expressed in tomato flower abscission zone. The overexpression of SlWUS in Arabidopsis could trigger undifferentiation of plant flower organ and indeterminacy of flower identity, suggesting that SlWUS maybe involved in flower structure development as well as flower organ identity. Taken together, our results indicated that the SlWUS plays an important role in flower abscission zone and plant organ shedding.
参考文献 | 相关文章 | 多维度评价
28. Differentially Expressed Genes of Soybean During Infection by Phytophthorasojae
XU Peng-fei, Allen Xue, CHEN Wei-yuan, LV Hui-ying, FAN Su-jie, WANG Xin, JIANG Liang-yu, ZHANG Shu-zhen
Journal of Integrative Agriculture    2012, 12 (3): 368-377.   DOI: 10.1016/S1671-2927(00)8554
摘要1624)      PDF    收藏
To elucidate the differential gene expression patterns in soybeans during infection by Phytophthora sojae, a cDNA libraryfor suppression subtractive hybridization (SSH) was constructed with cDNAs from soybean cultivar Suinong 10 treatedwith sterile distilled water as the driver and cDNAs from Suinong 10 inoculated with P. sojae as the tester. A total of 2 067recombinant colonies from the SSH library were randomly picked, amplified, and sequenced. After discarding 312 poorquality expressed sequence tags (EST), 1 755 high quality ESTs were assembled and edited to 1 384 tentatively uniquegenes (TUG), in which, 586 showed significant homology to known sequences, and 798 had low homology or no matchwith the known sequences. A cDNA microarray containing 307 singletons from the 586 TUGs and 222 singletons from the798 TUGs was developed to characterize differentially expressed cDNAs in the SSH library, and eight cDNAs wereidentified to be up-regulated after microarray analysis and then confirmed by real-time PCR. They were homologous to theprotein 10, and were also related to some proteins in disease resistance response, such as pathogen-related protein,phenylalanine ammonia-lyase, isoflavone reductase, WRKY transcription factor 31, major allergen Pru ar 1, and pleiotropicdrug resistance protein 12. Most of the up-regulated cDNAs encode enzymes of phytoalexin biosynthesis andpathogenesis-related proteins involved in plant disease resistance. Here, we fist reported the Pru ar 1 in soybeans. Thefindings of this research have contributed to better understanding of soybean resistance to P. sojae at the molecular level.
参考文献 | 相关文章 | 多维度评价
29. The Effect ofAdministration of Rutin on Plasma Levels of Estrogen, Prolactin, Growth Hormone and Gene Expression of Their Receptors in Mammary Glands in Ovariectomized Rats
GUO Xu-dong, DIAO Qi-yu, WANG Yue-ying, TU Yan, DENG Kai-dong, WANG Xin-jian, FU Tong, YAN Gui-long
Journal of Integrative Agriculture    2012, 12 (10): 1700-1706.   DOI: 10.1016/S1671-2927(00)8703
摘要1633)      PDF    收藏
The development of mammary glands, endocrine hormone concentrations and the gene expression of related receptors were measured in ovariectomized virgin rats after adminstration of an estrogen-like plant extract, rutin. Thirty-two ovariectomized virgin Wistar rats were randomly assigned to 4 treatments with 8 animals each: gastric infusion of 2 mL normal saline per unovariectomized rat per day (Sham), gastric infusion of 2 mL normal saline per ovariectomized rat per day (Ova), gastric infusion of 60 mg rutin kg-1 body weight (BW) per ovariectomized rat per day (Ova+Rut), or intramuscular injection of 60 μg estradiol kg-1 BW per ovariectomized rat weekly (Ova+Est). Samples of blood and mammary glands were harvested to determine the levels of estrogen (E2), prolactin (PRL) and growth hormone (GH), and the gene expression of estrogen receptors (ER), prolactin receptors (PRLR) and growth hormone receptors (GHR) with radioimmunoassy (RIA) and RT-PCR technology, respectively. The E2 concentration in plasma and gland tissues from the rats of Ovx+Rut or Ovx+Est was higher than that of Ovx (P<0.05), but the plasma E2 concentration from the rats of Ovx+Rut was lower than that of Sham (P<0.05). The order of the PRL concentration in plasma and gland tissues was Ovx
参考文献 | 相关文章 | 多维度评价
30. 18S核糖体RNA甲基转移酶METTL5介导CDX2翻译调控猪早期胚胎发育
XU Teng-teng, ZHANG Meng-ya, LIU Qiu-chen, WANG Xin, LUO Peng-fei, LIU Tong, YAN Ye-lian, ZHOU Na-ru, MA Yang-yang, YU Tong, LI Yun-sheng, CAO Zu-bing, ZHANG Yun-hai
Journal of Integrative Agriculture    DOI: 10.1016/j.jia.2023.10.013
录用日期: 2023-10-19