氮(N)是植物和土壤微生物必需的营养元素,但陆地生态系统常受到N限制。目前,有关不同植被斑块类型如何影响草原生态系统中植物与土壤微生物之间N分配的研究仍存在不足。选取青藏高原退化高寒草原5种常见的植被斑块进行15N标记实验(15N-NO3−和15N-NH4+),对不同植被斑块类型下植物和微生物的N获取策略进行研究。结果表明,5种植被斑块中植物和土壤微生物均偏好吸收NO3−。适口性较好植物斑块中的植物N吸收量显著高于植被适口性较差斑块中的植物,而植被适口性较差斑块中的土壤微生物N吸收量则显著高于植被适口性较好的斑块。5种植被斑块类型中亚早熟禾(Poa litwinowiana)斑块中植物的N吸收量最高(NO3−:13.32–51.28 mg m-2;NH4+:0.35–1.36 mg m-2),而冰川棘豆(Oxytropis glacialis)斑块中土壤微生物的N吸收量最高(NO3−:846.97–1659.87 mg m-2;NH4+:108.75–185.14 mg m-2)。所有植被斑块中土壤微生物N吸收量高于植物N吸收量(即微生物氮吸收与植物氮吸收之比大于1)。随着高寒草原植被退化程度的加剧,植物的N吸收能力下降,而土壤微生物的N吸收能力增强。土壤微生物较强的N竞争能力可能会降低植物的营养吸收,对N素限制的高寒草原植被恢复产生不利影响。
糖是植物生长发育中不可或缺的生长能源,在通过疏水屏障时需要糖转运蛋白(STP)的帮助。当玉米受到病原体侵染时,糖的含量会产生波动,但是糖转运蛋白如何在玉米抗病过程中发挥作用还没有清晰地研究。为了鉴定玉米(Zea mays)糖转运蛋白家族成员并分析其在不同组织和生理条件下的表达规律,本研究利用生物信息学方法对玉米基因组中糖转运蛋白编码基因进行了系统性鉴定和分析,利用同源性分析鉴定玉米糖转运蛋白编码基因,利用保守结构域分析对糖转运蛋白进行结构域鉴定,利用转录组数据对糖转运蛋白编码基因进行表达规律分析,利用激素处理试验,验证了该家族成员在激素处理下的表达规律,并利用病斑侵染突变体,验证了该家族成员ZmSTP2和ZmSTP20具有抗病性。结果表明,玉米糖转运蛋白家族包含24个成员,均预测分布在细胞膜上,具有高度保守的跨膜转运结构域,玉米糖转运蛋白编码基因在不同组织中和胁迫下表达水平有明显差异,其中ZmSTP2和ZmSTP20在禾谷镰孢(Fusarium graminearum)侵染后表达水平持续上升,通过对zmstp2和zmstp20突变体进行抗病分析,发现接种玉米圆斑菌(Cochliobolus carbonum)、玉米大斑菌(Setosphaeria turcica)、玉米小斑菌(Cochliobolus heterostrophus)和禾谷镰孢(F. graminearum)后,zmstp2和zmstp20突变体的病斑面积显著高于野生型B73。本研究在全基因组层面对玉米糖转运蛋白编码基因进行了系统性鉴定和分析,明确了玉米糖转运蛋白的编码基因,揭示了糖转运蛋白编码基因在玉米不同组织及生物和非生物胁迫中的表达规律,为进一步阐明其功能奠定了重要的理论基础。
肌纤维是骨骼肌的主要组成部分,由肌管成熟形成。在早期发育过程中,骨骼肌卫星细胞(SSCs)增殖为成肌细胞,随后成肌细胞经历分化和融合形成肌管。然而,从SSCs到肌管转化过渡机制仍不清晰。因此,本研究采用了RNA-seq和DIA技术对山羊肌卫星细胞、成肌细胞(分化2天)和肌管(分化10天)进行了转录组和蛋白组测序。首先,对两个组学分别进行了差异分析,转录组中共鉴定到5785个差异基因,蛋白组中共鉴定到2946个差异蛋白。蛋白质组分析发现SLMAP和STOM可能与肌管的形成有关。沉默SLMAP后,成肌标记基因MyoD的明显上调(P<0.01)和肌管标记基因MyoG和Myosin7明显下调(P<0.01),但Desmin的表达水平没有变化;沉默STOM后,成肌标记基因MyoD的明显上调(P<0.01)和肌管标记基因MyoG、Myosin7和Desmin均明显下调(P<0.01)。在更严格的差异分析条件下(差异蛋白|log2(FC)|>1.2;差异基因|log2(FC)|>2))整合两个组学数据发现,在肌卫星细胞和成肌细胞比较组中,18个因子呈正相关,37个因子呈负相关;在成肌细胞和肌管比较组中,31个因子呈正相关,10个因子呈负相关。这些因子的GO分析表明,从肌卫星细胞到成肌细胞转变时,分化和迁移相关的因子SVIL、ENSCHIG00000026624(AQP1)、SERPINE1上调,同时伴随着细胞凋亡。在成肌细胞到肌管转变时,与细胞粘附和信号转导有关的候选因子在肌管中高度表达,CCN2、TGFB1、MYL2和MYL4被确定为成肌细胞和肌管比较组的关键候选因子。综上,本研究从转录组和蛋白组中筛选到了可能影响肌卫星细胞到成肌细胞,再到肌管转变的关键因子,对肌肉早期发育或损伤后再生过程中肌管形成提供新的解析。
前期研究表明,灰葡萄孢BcSDR1基因参与调控病菌的生长发育和致病过程。然而,BcSDR1的调控机制以及BcSDR1与cAMP和MAPK信号通路的关系还不是很清楚。本研究中,转录组数据显示,BcSDR1参与了葡萄糖跨膜运输、信号转导、次级代谢等生物过程。BcSDR1突变体(BCt41)对cAMP和MAPK信号通路特异性抑制剂SQ22536和U0126的敏感性非常弱,cAMP含量明显下降。进一步通过qRT-PCR 来检测cAMP和MAPK信号通路的关键基因的表达量,发现BcSDR1突变体中BcGB1、BcBTP1、BcBOS1、BcRAS1和BcBMP3明显上调,而BcPLC1、BcBCG1、BcCDC4、BcSAK1、BcATF1和BcBAP1明显下调。BcSDR1在BcBCG2、BcBCG3、BcPKA1和BcPKAR的RNAi突变体中明显上调,但在BcPKA2、BcBMP1和BcBMP3的RNAi突变体中显著下调。因此,BcBCG2、BcBCG3、BcPKA1和BcPKAR负向调节BcSDR1的表达,而BcPKA2、BcBMP1和BcBMP3正向调节BcSDR1表达。本研究可为制定持久控制灰霉病的策略提供理论依据和实践基础,同时为研究其他真菌的遗传、发育和致病性提供重要参考价值依据。
本研究通过抗原性分析发现,2020年至2021年在野鸟或家禽中分离的一些H5N6、H5N8和H5N1病毒与我国大规模应用的H5疫苗种毒株(H5-Re11株和H5-Re12株)的抗原性存在较大差异,部分2021年分离的H7N9病毒也与我国使用的H7-Re3株疫苗毒株存在抗原性差异。为保持疫苗株与监测毒株之间良好的抗原匹配性,本研究利用反向遗传学操作技术,构建出针对抗原变异毒株的3株重组疫苗种毒(H5-Re13、H5-Re14和H7-Re4),用于疫苗的更新。其中,H5-Re13疫苗株的HA和NA基因来自于2.3.4.4h分支的H5N6病毒(DK/FJ/S1424/20),H5-Re14疫苗株的HA和NA基因来自于2.3.4.4b分支的H5N8病毒(WS/SX/4-1/20),H7-Re4疫苗株的HA和NA基因来自于2021年分离的H7N9病毒(CK/YN/SD024/21)。进一步使用上述3株重组病毒制备新型H5+H7三价灭活疫苗,进行鸡、鸭和鹅的免疫效力研究。结果显示,H5+H7三价灭活疫苗接种鸡、鸭和鹅后均可诱导出良好的HI抗体反应;SPF鸡接种疫苗后3周时,用2020年和2021年分离到的5株不同H5和H7病毒攻击,包括3株2.3.4.4b分支病毒(H5N1、H5N6和H5N8病毒各1株)、1株2.3.4.4h分支的H5N6病毒和1株H7N9病毒,攻毒后所有对照组鸡均出现高滴度的排毒,并在攻毒后4天内全部死亡,而疫苗接种组鸡则完全抵御病毒的感染;接种疫苗的鸭和鹅在攻击2.3.4.4h或2.3.4.4b分支H5病毒后也获得完全免疫保护。本研究结果表明,新型H5+H7三价疫苗具有良好的免疫原性,对于近期监测到的H5N1、H5N6、H5N8和H7N9病毒的攻击可提供完全的免疫保护作用。鉴于不同H5病毒和H7N9病毒对家禽的威胁,本研究建议我国广泛使用该H5+H7三价灭活疫苗,并推荐该疫苗在其他受到H5和H7病毒威胁的国家应用。