中国农业科学 ›› 2025, Vol. 58 ›› Issue (24): 5201-5215.doi: 10.3864/j.issn.0578-1752.2025.24.008

• 土壤肥料·节水灌溉·农业生态环境 • 上一篇    下一篇

不同作物轮作系统对土壤易氧化有机碳和碳库活度差异性的影响

马鹤逍1(), 葛国龙1, 张向前2,3,*(), 路战远1,2, 王满秀1, 戎美仁2,3, 师晶晶1, 张德健1,*(), 孙雪萍3   

  1. 1 内蒙古大学生命科学学院/牧草与特色作物生物技术教育部重点实验室, 呼和浩特 010020
    2 内蒙古自治区农牧业科学院/农业农村部黑土地保护与利用重点实验室, 呼和浩特 010031
    3 内蒙古农业大学, 呼和浩特 010018
  • 收稿日期:2025-01-16 接受日期:2025-04-17 出版日期:2025-12-22 发布日期:2025-12-22
  • 通信作者:
    张向前,E-mail:
    张德健,E-mail:
  • 联系方式: 马鹤逍,E-mail:17836227607@163.com。
  • 基金资助:
    内蒙古自治区科技计划项目(2025YFDZ0059); 内蒙古自治区科技计划项目(2022YFDZ0071); 国家自然科学基金(32060450); 中央引导地方科技发展资金(2022ZY0216); 农牧交错区耕地保育与产能提升创新人才团队项目(2025TYL09)

Effects of Different Crop Rotation Systems on Soil Readily Oxidized Organic Carbon and Carbon Pool Activity Differences

MA HeXiao1(), GE GuoLong1, ZHANG XiangQian2,3,*(), LU ZhanYuan1,2, WANG ManXiu1, RONG MeiRen2,3, SHI JingJing1, ZHANG DeJian1,*(), SUN XuePing3   

  1. 1 College of Life Sciences, Inner Mongolia University/Key Laboratory of Forage and Characteristic Crop Biotechnology of Ministry of Education, Hohhot 010020
    2 Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences/Key Laboratory of Black Land Protection and Utilization, Ministry of Agriculture and Rural Affairs, Hohhot 010031
    3 Inner Mongolia Agricultural University, Hohhot 010018
  • Received:2025-01-16 Accepted:2025-04-17 Published:2025-12-22 Online:2025-12-22

摘要:

【目的】土壤有机碳库活度及稳定性是直接反映土壤质量的重要指标,探究作物长期轮作系统对土壤有机碳、活性有机碳及土壤碳库管理指数的影响,为黑土区土壤碳库科学管理和作物合理布局提供依据。【方法】试验于2016年开始,共设置马铃薯连作(P-P)、玉米连作(M-M)、大豆连作 (S-S)、大豆-玉米轮作(S-M)、大豆-马铃薯轮作(S-P)、玉米-玉米-马铃薯轮作(M-M-P)及大豆-玉米-马铃薯轮作(S-M-P)7个处理,以P-P为对照。系统分析不同处理2022及2023年收获期0—60 cm土层土壤有机碳(SOC)、易氧化有机碳(ROC)、惰性有机碳(IOC)及土壤碳库管理指数(CPMI)的变化特征。【结果】与P-P处理相比,2022及2023年:(1)0—10 cm土层S-M-P及S-M处理SOC含量分别显著增加了10.22%—12.49%、20.67%—36.75%;10—20 cm土层M-M-P处理SOC含量分别显著提高了16.65%、33.76%;20—40 cm土层S-M-P及M-M-P处理SOC含量分别显著提高了28.74%—36.78%、48.78%—53.67%;2023年40—60 cm土层S-M-P显著提高了14.90%(P<0.05)。(2)0—10 cm土层S-M及M-M-P处理ROC333含量分别显著提高了20.09%—20.41%、34.94%—39.69%;10—20 cm土层所有轮作处理ROC333分别显著增长13.16%—26.32%、28.98%—52.63%(P<0.05)。(3)0—10 cm土层S-P、S-M及S-M-P处理ROC167含量分别显著提高了21.11%—35.46%、42.33%—44.85% (P<0.05)。(4)0—10 cm土层S-M-P处理ROC33.3含量分别显著提高了18.04%、19.02% (P<0.05)。(5)0—10 cm土层S-M-P处理IOC显著提高13.30%、14.84%;20—40 cm土层M-M-P、S-M-P、S-M处理显著提高了20.38%—52.51%、59.56%—69.54%(P<0.05)。(6)0—10 cm土层S-M和M-M-P处理CPMI显著提高24.07%—28.13%、41.46%—42.57%;10—20 cm土层所有轮作处理显著提高了17.34%—31.49%、36.97%—61.11%(P<0.05)。【结论】玉米-大豆、大豆-玉米-马铃薯及玉米-玉米-马铃薯轮作有利于提高土壤碳库活度,增加土壤碳稳定性。豆科作物轮作既可增加有机碳库活度也可保持其稳定性,有利于稳定黑土地土壤碳库平衡。

关键词: 农牧交错黑土区, 玉米, 大豆, 马铃薯, 轮作, 土壤有机碳, 土壤易氧化有机碳, 土壤碳库管理指数

Abstract:

【Objective】Soil organic carbon pool activity and stability are important indicators that directly reflect soil quality. This study aimed to explore the effects of long-term crop rotation system on soil organic carbon, active organic carbon and soil carbon pool management index, so as to provide the scientific management of soil carbon pool and rational crop layout in black soil areas.【Method】The experiment started in 2016, and 7 treatments were set up: potato continuous cropping (P-P), maize continuous cropping (M-M), soybean continuous cropping (S-S), soybean-maize rotation (S-M), soybean-potato rotation (S-P), maize-maize- potato rotation (M-M-P), and soybean-maize-potato rotation (S-M-P). P-P was used as a control. The characteristics of soil organic carbon (SOC), readily oxidizable carbon(ROC), inert organic carbon (IOC) and soil carbon pool management index (CPMI) in 0-60 cm soil layer at the harvest stage in 2022 and 2023 were analyzed systematically.【Result】Compared with the P-P treatment, in 2022 and 2023: (1) SOC content under S-M-P and S-M treatment in 0-10 cm soil layer increased significantly by 10.22%-12.49% and 20.67%-36.75%, respectively. The M-M-P treatment of 10-20 cm soil layer significantly increased by 16.65% and 33.76%, respectively. SOC content under S-M-P and M-M-P treatments in 20-40 cm soil layer was significantly increased by 28.74%-36.78% and 48.78%-53.67%, respectively. In 2023, the S-M-P in 40-60 cm soil layer was significantly increased by 14.90% (P<0.05). (2) ROC333 content in 0-10 cm soil layer under S-M and M-M-P treatment was significantly increased by 20.09%-20.41% and 34.94%-39.69%, respectively. ROC333 of all rotation treatments in 10-20 cm soil layer increased significantly by 13.16%-26.32% and 28.98%-52.63%, respectively (P<0.05). (3) ROC167 content in S-P, S-M and S-M-P treatments in 0-10 cm soil layer was significantly increased by 21.11%-35.46% and 42.33%-44.85%, respectively (P<0.05). (4) ROC33.3 content in 0-10 cm soil layer under S-M-P treatment was significantly increased by 18.04% and 19.02%, respectively (P<0.05). (5) IOC of S-M-P treatment in 0-10 cm soil layer was significantly increased by 13.30% and 14.84%; M-M-P, S-M-P and S-M treatments in 20-40 cm soil layer significantly increased by 20.38%-52.51% and 59.56%-69.54%, respectively (P<0.05). (6) CPMI in 0-10 cm soil layer was significantly increased by 24.07%-28.13% and 41.46%-42.57% under S-M and M-M-P treatments, respectively. All rotation treatments in 10-20 cm soil layer were significantly increased by 17.34%-31.49% and 36.97%-61.11%, respectively (P<0.05). 【Conclusion】In conclusion, maize-soybean, soy-maize-potato and maize-maize-potato rotation treatments were beneficial to improve soil carbon pool activity and increase soil carbon stability. Leguminous crop rotation could not only increase the activity of organic carbon pool but also maintain its stability, which was conducive to the stability of soil carbon pool balance in black soil.

Key words: black soil area interlaced with agriculture and animal husbandry, maize, soybean, potato, crop rotation, soil organic carbon, soil readily oxidized organic carbon, soil carbon pool management index