[1] |
POURCEL L, ROUTABOUL J M, CHEYNIER V, LEPINIEC L, DEBEAUJON I. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends in Plant Science, 2007, 12(1): 29-36.
doi: 10.1016/j.tplants.2006.11.006
pmid: 17161643
|
[2] |
LI P, LI Y J, ZHANG F J, ZHANG G Z, JIANG X Y, YU H M, HOU B K. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal, 2017, 89(1): 85-103.
|
[3] |
XIE P, SHI J Y, TANG S Y, CHEN C X, KHAN A, ZHANG F X, XIONG Y, LI C, HE W, WANG G D, LEI F M, WU Y R, XIE Q. Control of bird feeding behavior by Tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in Sorghum. Molecular Plant, 2019, 12(10): 1315-1324.
|
[4] |
NAKABAYASHI R, YONEKURA-SAKAKIBARA K, URANO K, SUZUKI M, YAMADA Y, NISHIZAWA T, MATSUDA F, KOJIMA M, SAKAKIBARA H, SHINOZAKI K, MICHAEL A J, TOHGE T, YAMAZAKI M, SAITO K. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. The Plant Journal, 2014, 77(3): 367-379.
|
[5] |
FAN X P, FAN B H, WANG Y X, YANG W C. Anthocyanin accumulation enhanced in Lc-transgenic cotton under light and increased resistance to bollworm. Plant Biotechnology Reports, 2016, 10(1): 1-11.
|
[6] |
BISHAYEE A, MBIMBA T, THOPPIL R J, HÁZNAGY-RADNAI E, SIPOS P, DARVESH A S, FOLKESSON H G, HOHMANN J. Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. The Journal of Nutritional Biochemistry, 2011, 22(11): 1035-1046.
|
[7] |
SINGLETARY K W, JUNG K J, GIUSTI M. Anthocyanin-rich grape extract blocks breast cell DNA damage. Journal of Medicinal Food, 2007, 10(2): 244-251.
doi: 10.1089/jmf.2006.258
pmid: 17651059
|
[8] |
FILIPIAK K, HIDALGO M, SILVAN J M, FABRE B, CARBAJO R J, PINEDA-LUCENA A, RAMOS A, DE PASCUAL-TERESA B, DE PASCUAL-TERESA S. Dietary Gallic acid and anthocyanin cytotoxicity on human fibrosarcoma HT1080 cells. A study on the mode of action. Food & Function, 2014, 5(2): 381-389.
|
[9] |
ZHAO J, DIXON R A. The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science, 2010, 15(2): 72-80.
|
[10] |
MUELLER L A, GOODMAN C D, SILADY R A, WALBOT V. AN9, a Petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiology, 2000, 123(4): 1561-1570.
|
[11] |
GOMEZ C, TERRIER N, TORREGROSA L, VIALET S, FOURNIER- LEVEL A, VERRIÈS C, SOUQUET J M, MAZAURIC J P, KLEIN M, CHEYNIER V, AGEORGES A. Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiology, 2009, 150(1): 402-415.
doi: 10.1104/pp.109.135624
pmid: 19297587
|
[12] |
REA P A. Plant ATP-binding cassette transporters. Annual Review of Plant Biology, 2007, 58: 347-375.
pmid: 17263663
|
[13] |
ZHANG H B, WANG L, DEROLES S, BENNETT R, DAVIES K. New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biology, 2006, 6: 29.
pmid: 17173704
|
[14] |
MARRS K A, ALFENITO M R, LLOYD A M, WALBOT V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature, 1995, 375: 397-400.
|
[15] |
SUN Y, LI H, HUANG J R. Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Molecular Plant, 2012, 5(2): 387-400.
|
[16] |
PÉREZ-DÍAZ R, MADRID-ESPINOZA J, SALINAS-CORNEJO J, GONZÁLEZ-VILLANUEVA E, RUIZ-LARA S. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinifera. Frontiers in Plant Science, 2016, 7: 1166.
|
[17] |
CONN S, CURTIN C, BÉZIER A, FRANCO C, ZHANG W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented Vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. Journal of Experimental Botany, 2008, 59(13): 3621-3634.
|
[18] |
LIEBERHERR D, WAGNER U, DUBUIS P H, MÉTRAUX J P, MAUCH F. The rapid induction of glutathione S-transferases AtGSTF2 and AtGSTF6 by avirulent Pseudomonas syringae is the result of combined salicylic acid and ethylene signaling. Plant and Cell Physiology, 2003, 44(7): 750-757.
|
[19] |
TANG L P, XIAO D, YIN Y Q, WANG H B, WANG J J, LIU T K, HOU X L, LI Y. Comparative transcriptome analysis of purple and green non-heading Chinese cabbage and function analyses of BcTT8 gene. Genes, 2022, 13(6): 988.
|
[20] |
LI Y, LIU G F, MA L M, LIU T K, ZHANG C W, XIAO D, ZHENG H K, CHEN F, HOU X L. A chromosome-level reference genome of non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. Chinensis]. Horticulture Research, 2020, 7: 212.
|
[21] |
CHEN C J, WU Y, LI J W, WANG X, ZENG Z H, XU J, LIU Y L, FENG J T, CHEN H, HE Y H, XIA R. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 2023, 16(11): 1733-1742.
|
[22] |
CLOUGH S J, BENT A F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 1998, 16(6): 735-743.
|
[23] |
JIANG S H, CHEN M, HE N B, CHEN X L, WANG N, SUN Q G, ZHANG T L, XU H F, FANG H C, WANG Y C, ZHANG Z Y, WU S J, CHEN X S. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. Horticulture Research, 2019, 6: 40.
doi: 10.1038/s41438-019-0118-6
pmid: 30854214
|
[24] |
ISLAM S, RAHMAN I A, ISLAM T, GHOSH A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles. PLoS ONE, 2017, 12(11): e0187504.
|
[25] |
HAN L L, ZOU H Z, ZHOU L, WANG Y. Transcriptome-based identification and expression analysis of the glutathione S-transferase (GST) family in tree peony reveals a likely role in anthocyanin transport. Horticultural Plant Journal, 2022, 8(6): 787-802.
|
[26] |
KOU M, LIU Y J, LI Z Y, ZHANG Y G, TANG W, YAN H, WANG X, CHEN X G, SU Z X, ARISHA M H, LI Q, MA D F. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant Physiology and Biochemistry, 2019, 135: 395-403.
|
[27] |
LUO H F, DAI C, LI Y P, FENG J, LIU Z C, KANG C Y. Reduced Anthocyanins in Petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. Journal of Experimental Botany, 2018, 69(10): 2595-2608.
doi: 10.1093/jxb/ery096
pmid: 29538703
|
[28] |
CHAI Q C, WANG X L, GAO M W, ZHAO X C, CHEN Y, ZHANG C, JIANG H, WANG J B, WANG Y C, ZHENG M N, BALTAEVICH A M, ZHAO J, ZHAO J S. A glutathione S- transferase GhTT19 determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. Plant Biotechnology Journal, 2023, 21(2): 433-448.
|
[29] |
ZHAO Y, DONG W Q, ZHU Y C, ALLAN A C, KUI L W, XU C J. PpGST1, an anthocyanin-related glutathione S-transferase gene, is essential for fruit coloration in peach. Plant Biotechnology Journal, 2020, 18(5): 1284-1295.
|
[30] |
KITAMURA S, SHIKAZONO N, TANAKA A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. The Plant Journal, 2004, 37(1): 104-114.
|
[31] |
HAN L L, ZHOU L, ZOU H Z, YUAN M, WANG Y. PsGSTF3, an anthocyanin-related glutathione S-transferase gene, is essential for petal coloration in tree peony. International Journal of Molecular Sciences, 2022, 23(3): 1423.
|
[32] |
HU B, ZHAO J T, LAI B, QIN Y H, WANG H C, HU G B. LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Reports, 2016, 35(4): 831-843.
|
[33] |
DUAN A Q, DENG Y J, TAN S S, LIU S S, LIU H, XU Z S, SHU S, XIONG A S. DcGST1, encoding a glutathione S-transferase activated by DcMYB7, is the main contributor to anthocyanin pigmentation in purple carrot. The Plant Journal, 2024, 117(4): 1069-1083.
|
[34] |
SHAO D N, LI Y J, ZHU Q H, ZHANG X Y, LIU F, XUE F, SUN J. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.). Plant Science, 2021, 305: 110827.
|
[35] |
LIU Y F, QI Y W, ZHANG A L, WU H X, LIU Z D, REN X L. Molecular cloning and functional characterization of AcGST1, an anthocyanin-related glutathione S-transferase gene in kiwifruit (Actinidia chinensis). Plant Molecular Biology, 2019, 100(4): 451-465.
|
[36] |
WANGWATTANA B, KOYAMA Y, NISHIYAMA Y, KITAYAMA M, YAMAZAKI M, SAITO K. Characterization of PAP1-upregulated glutathione S-transferase genes in Arabidopsis thaliana. Plant Biotechnology, 2008, 25(2): 191-196.
|
[37] |
OSMANI S A, BAK S, MØLLER B L. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling. Phytochemistry, 2009, 70(3): 325-347.
doi: 10.1016/j.phytochem.2008.12.009
pmid: 19217634
|
[38] |
CUI Y M, FAN J W, LU C F, REN J S, QI F T, HUANG H, DAI S L. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus. Plant Science, 2021, 313: 111094.
|