| [1] | LI R Y, LI B J, JIANG A W, CAO Y, HOU L M, ZHANG Z K, ZHANG X Y, LIU H L, KIM K H, WU W J. Exploring the lncRNAs related to skeletal muscle fiber types and meat quality traits in pigs. Genes, 2020, 11(8): 883.  doi: 10.3390/genes11080883
 | 
																													
																						| [2] | WANG S S, JIN J J, XU Z Y, ZUO B. Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis, muscle disease and meat production. Cells, 2019, 8(9): 1107.  doi: 10.3390/cells8091107
 | 
																													
																						| [3] | PELLEGRINO A, TIIDUS P M, VANDENBOOM R. Mechanisms of estrogen influence on skeletal muscle: mass, regeneration, and mitochondrial function. Sports Medicine, 2022, 52(12): 2853-2869.  doi: 10.1007/s40279-022-01733-9
 | 
																													
																						| [4] | SALZMAN J, GAWAD C, WANG P L, LACAYO N, BROWN P O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS ONE, 2012, 7(2): e30733.  doi: 10.1371/journal.pone.0030733
 | 
																													
																						| [5] | SALZMAN J, CHEN R E, OLSEN M N, WANG P L, BROWN P O. Cell-type specific features of circular RNA expression. PLoS Genetics, 2013, 9(9): e1003777.  doi: 10.1371/journal.pgen.1003777
 | 
																													
																						| [6] | JECK W R, SORRENTINO J A, WANG K, SLEVIN M K, BURD C E, LIU J Z, MARZLUFF W F, SHARPLESS N E. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.  doi: 10.1261/rna.035667.112
																																					pmid: 23249747
 | 
																													
																						| [7] | DAUBAS P, BUCKINGHAM M E. Direct molecular regulation of the myogenic determination gene Myf5 by Pax3, with modulation by Six1/4 factors, is exemplified by the -111 kb-Myf5 enhancer. Developmental Biology, 2013, 376(2): 236-244.  doi: 10.1016/j.ydbio.2013.01.028
 | 
																													
																						| [8] | KASSAR-DUCHOSSOY L, GAYRAUD-MOREL B, GOMÈS D, ROCANCOURT D, BUCKINGHAM M, SHININ V, TAJBAKHSH S. Mrf4 determines skeletal muscle identity in Myf5: Myod double- mutant mice. Nature, 2004, 431(7007): 466-471.  doi: 10.1038/nature02876
 | 
																													
																						| [9] | BUCKINGHAM M, RELAIX F. PAX3 and PAX7 as upstream regulators of myogenesis. Seminars in Cell & Developmental Biology, 2015, 44: 115-125. | 
																													
																						| [10] | HUDMON A, SCHULMAN H. Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. The Biochemical Journal, 2002, 364(Pt 3): 593-611.  doi: 10.1042/bj20020228
 | 
																													
																						| [11] | CABELKA C A, BAUMANN C W, COLLINS B C, NASH N, LE G Y, LINDSAY A, SPANGENBURG E E, LOWE D A. Effects of ovarian hormones and estrogen receptor α on physical activity and skeletal muscle fatigue in female mice. Experimental Gerontology, 2019, 115: 155-164.  doi: S0531-5565(18)30604-1
																																					pmid: 30415069
 | 
																													
																						| [12] | HANSEN M. Female hormones: Do they influence muscle and tendon protein metabolism? The Proceedings of the Nutrition Society, 2018, 77(1): 32-41. | 
																													
																						| [13] | KARVINEN S, JUPPI H K, LE G Y, CABELKA C A, MADER T L, LOWE D A, LAAKKONEN E K. Estradiol deficiency and skeletal muscle apoptosis: Possible contribution of microRNAs. Experimental Gerontology, 2021, 147: 111267.  doi: 10.1016/j.exger.2021.111267
 | 
																													
																						| [14] | HANSEN T B, JENSEN T I, CLAUSEN B H, BRAMSEN J B, FINSEN B, DAMGAARD C K, KJEMS J. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.  doi: 10.1038/nature11993
 | 
																													
																						| [15] | LI F, ZHANG L Y, LI W, DENG J Q, ZHENG J, AN M X, LU J C, ZHOU Y F. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget, 2015, 6(8): 6001-6013.  doi: 10.18632/oncotarget.3469
																																					pmid: 25749389
 | 
																													
																						| [16] | BAK R O, MIKKELSEN J G. miRNAsponges: soakingupmiRNAs for regulation of gene expression. Wiley Interdisciplinary Reviews: RNA, 2014, 5(3): 317-333.  doi: 10.1002/wrna.2014.5.issue-3
 | 
																													
																						| [17] | RONG D W, SUN H D, LI Z X, LIU S H, DONG C X, FU K, TANG W W, CAO H Y. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget, 2017, 8(42): 73271-73281.  doi: 10.18632/oncotarget.19154
																																					pmid: 29069868
 | 
																													
																						| [18] | SUZUKI H, ZUO Y H, WANG J H, ZHANG M Q, MALHOTRA A, MAYEDA A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Research, 2006, 34(8): e63.  doi: 10.1093/nar/gkl151
																																					pmid: 16682442
 | 
																													
																						| [19] | JECK W R, SHARPLESS N E. Detecting and characterizing circular RNAs. Nature Biotechnology, 2014, 32(5): 453-461.  doi: 10.1038/nbt.2890
																																					pmid: 24811520
 | 
																													
																						| [20] | QI A, RU W X, YANG H Y, YANG Y, TANG J, YANG S L, LAN X Y, LEI C Z, SUN X Z, CHEN H. Circular RNA ACTA1 acts as a sponge for miR-199a-5p and miR-433 to regulate bovine myoblast development through the MAP3K11/MAP2K7/JNK pathway. Journal of Agricultural and Food Chemistry, 2022, 70(10): 3357-3373.  doi: 10.1021/acs.jafc.1c07762
																																					pmid: 35234473
 | 
																													
																						| [21] | CHEN B, YU J, GUO L J, BYERS M S, WANG Z J, CHEN X L, XU H P, NIE Q H. Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p. Cells, 2019, 8(2): 177.  doi: 10.3390/cells8020177
 | 
																													
																						| [22] | ZHANG L, ZHOU C F, JIANG X Y, HUANG S T, LI Y H, SU T, WANG G W, ZHOU Y, LIU M, XU D Q. Circ0001470 acts as a miR-140-3p sponge to facilitate the progression of embryonic development through regulating PTGFR expression. Cells, 2022, 11(11): 1746.  doi: 10.3390/cells11111746
 | 
																													
																						| [23] | SZABO L, SALZMAN J. Detecting circular RNAs: Bioinformatic and experimental challenges. Nature Reviews Genetics, 2016, 17(11): 679-692.  doi: 10.1038/nrg.2016.114
																																					pmid: 27739534
 | 
																													
																						| [24] | ELNOUR I E, WANG X G, ZHANSAYA T, AKHATAYEVA Z, KHAN R, CHENG J, HUNG Y, LAN X Y, LEI C Z, CHEN H. Circular RNA circMYL1 inhibit proliferation and promote differentiation of myoblasts by sponging miR-2400. Cells, 2021, 10(1): 176.  doi: 10.3390/cells10010176
 | 
																													
																						| [25] | YANG Z X, SONG C C, JIANG R, HUANG Y Z, LAN X Y, LEI C Z, QI X L, ZHANG C L, HUANG B Z, CHEN H. CircNDST1 regulates bovine myoblasts proliferation and differentiation via the miR-411a/ Smad4 axis. Journal of Agricultural and Food Chemistry, 2022, 70(32): 10044-10057.  doi: 10.1021/acs.jafc.1c08167
 | 
																													
																						| [26] | YUE B L, WANG J, RU W X, WU J Y, CAO X K, YANG H Y, HUANG Y Z, LAN X Y, LEI C Z, HUANG B Z, CHEN H. The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development. Molecular Therapy Nucleic Acids, 2020, 19: 1086-1097.  doi: 10.1016/j.omtn.2019.12.039
 | 
																													
																						| [27] | CHEN X L, OUYANG H J, WANG Z J, CHEN B, NIE Q H. A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p. Cells, 2018, 7(11): 199.  doi: 10.3390/cells7110199
 | 
																													
																						| [28] | TOUTENHOOFD S L, FOLETTI D, WICKI R, RHYNER J A, GARCIA F, TOLON R, STREHLER E E. Characterization of the human CALM2 calmodulin gene and comparison of the transcriptional activity of CALM1, CALM2 and CALMS. Cell Calcium, 1998, 23(5): 323-338.  doi: 10.1016/S0143-4160(98)90028-8
 | 
																													
																						| [29] | KUMAR A, RANI B, SHARMA R, KAUR G, PRASAD R, BAHL A, KHULLAR M. Correction to: ACE2, CALM3 and TNNI3K polymorphisms as potential disease modifiers in hypertrophic and dilated cardiomyopathies. Molecular and Cellular Biochemistry, 2019, 450(1/2): 209-210.  doi: 10.1007/s11010-018-3482-x
 | 
																													
																						| [30] | PHAN N N, WANG C Y, LIN Y C. The novel regulations of MEF2A, CAMKK2, CALM3, and TNNI3 in ventricular hypertrophy induced by arsenic exposure in rats. Toxicology, 2014, 324: 123-135.  doi: 10.1016/j.tox.2014.07.010
 | 
																													
																						| [31] | ZHAO Z L, XUE F, GU Y P, HAN J X, JIA Y X, YE K Q, ZHANG Y. Crosstalk between the muscular estrogen receptor α and BDNF/TrkB signaling alleviates metabolic syndrome via 7, 8-dihydroxyflavone in female mice. Molecular Metabolism, 2021, 45: 101149.  doi: 10.1016/j.molmet.2020.101149
 | 
																													
																						| [32] | OOSTHUYSE T, BOSCH A N. The effect of the menstrual cycle on exercise metabolism: implications for exercise performance in eumenorrhoeic women. Sports Medicine, 2010, 40(3): 207-227.  doi: 10.2165/11317090-000000000-00000
																																					pmid: 20199120
 | 
																													
																						| [33] | COUNTS B R, FIX D K, HETZLER K L, CARSON J A. The effect of estradiol administration on muscle mass loss and Cachexia progression in female apc (Min/+) mice. Frontiers in Endocrinology, 2019, 10: 720.  doi: 10.3389/fendo.2019.00720
 | 
																													
																						| [34] | ZHAO J, IMBRIE G A, BAUR W E, IYER L K, ARONOVITZ M J, KERSHAW T B, HASELMANN G M, LU Q, KARAS R H. Estrogen receptor-mediated regulation of microRNA inhibits proliferation of vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33(2): 257-265.  doi: 10.1161/ATVBAHA.112.300200
 | 
																													
																						| [35] | HEVENER A L, RIBAS V, MOORE T M, ZHOU Z Q. ERα in the control of mitochondrial function and metabolic health. Trends in Molecular Medicine, 2021, 27(1): 31-46.  doi: 10.1016/j.molmed.2020.09.006
																																					pmid: 33020031
 | 
																													
																						| [36] | KO S H, JUNG Y. Energy metabolism changes and dysregulated lipid metabolism in postmenopausal women. Nutrients, 2021, 13(12): 4556.  doi: 10.3390/nu13124556
 | 
																													
																						| [37] | SEKO D, FUJITA R, KITAJIMA Y, NAKAMURA K, IMAI Y, ONO Y. Estrogen receptor β controls muscle growth and regeneration in young female mice. Stem Cell Reports, 2020, 15(3): 577-586.  doi: S2213-6711(20)30294-0
																																					pmid: 32822588
 | 
																													
																						| [38] | LIU S Q, LIU Z Y, WANG P, LI W T, ZHAO S G, LIU Y F, CHU M X. Estrogen-mediated oar-miR-485-5p targets PPP1R13B to regulate myoblast proliferation in sheep. International Journal of Biological Macromolecules, 2023, 236: 123987.  doi: 10.1016/j.ijbiomac.2023.123987
 |