中国农业科学 ›› 2022, Vol. 55 ›› Issue (2): 378-389.doi: 10.3864/j.issn.0578-1752.2022.02.012
马玉峰1(),周忠雄3,李雨桐1,高雪琴1,乔亚丽1,张文斌1,颉建明1,胡琳莉1,2(),郁继华1,2()
收稿日期:
2020-03-17
接受日期:
2021-05-31
出版日期:
2022-01-16
发布日期:
2022-01-26
通讯作者:
胡琳莉,郁继华
作者简介:
马玉峰,E-mail: 基金资助:
MA YuFeng1(),ZHOU ZhongXiong3,LI YuTong1,GAO XueQin1,QIAO YaLi1,ZHANG WenBin1,XIE JianMing1,HU LinLi1,2(),YU JiHua1,2()
Received:
2020-03-17
Accepted:
2021-05-31
Online:
2022-01-16
Published:
2022-01-26
Contact:
LinLi HU,JiHua YU
摘要:
【目的】所有高等植物均会调控其根系形态,以便能更好地在土壤环境中获得充足的养分和水分,其中,氮素是调控根系形态的一个关键因子。探究氮素水平及形态对娃娃菜根系形态的影响及其生理机制,明确参与根系形态塑造的关键因子,为进一步研究氮素调控植物根系形态的分子机制奠定基础。【方法】以娃娃菜(品种‘惠农金娃娃’)为试材,设置两个氮素浓度(0.1和1 mmol·L-1)及两种氮素形态(NO3-和NH4+)共4个处理组合,使用根系扫描仪以及生理试验等方法,测定娃娃菜根系形态指标:总根长、总根体积、总根表面积和根尖数;生理指标:NO3-含量、NH4+含量、糖、一氧化氮(NO)和过氧化氢(H2O2)以及生根相关酶过氧化物酶(POD)、多酚氧化酶(PPO)以及吲哚乙酸氧化酶(IAAO)活性,采用同位素内标法,对内源激素细胞分裂素类(CTK)、茉莉酸类(JA)、生长素(IAA)、水杨酸(SA)、1-氨基环丙基-1-羧酸(ACC)和脱落酸(ABA)含量进行LC-MS/SM绝对定量分析,并分析根系形态与各生理指标之间的相关性。【结果】相同形态下,不同氮素水平对娃娃菜根系形态和生理作用不同。低浓度(0.1 mmol·L-1)的NO3-(LN)与高浓度(1.0 mmol·L-1)的NO3-(HN)相比,可分别显著提高根系总根长、表面积、根尖数43%、24%和50%;LN处理与HN处理相比,还原糖含量提高了55.81%,NO含量提高了18.3%,H2O2降低了20.44%;低浓度(0.1 mmol·L-1)的NH4+(LA)与高浓度(1.0 mmol·L-1)的NH4+(HA)相比,分别提高了根系总根长、总根体积、总根表面积和根尖数96%、73%、85%和45%,LA处理比HA处理的还原糖含量提高了200%,NO与H2O2均有所降低,分别降低74.59%和13.58%。相同水平下,不同氮素形态影响娃娃菜根系形态以及生理指标,与LA处理相比,LN处理提高了娃娃菜总根长和总根表面积,降低了总根体积和总根尖数,同时提高了还原糖含量,LA处理比LN处理的NO和H2O2含量分别降低73.68%和40.98%;与HA处理相比,HN处理提高总根长、总根体积和总根表面积,但降低了根系总根尖数,HA处理比HN处理NO和H2O2含量分别降低82.16%和58.66%。根系激素中十二氧植物二烯酸(12-OPDA)含量以LA处理最大,高于HA处理55.18%,各处理下12-OPDA含量高低为LA>LN>HA>HN;吲哚乙酸(IAA)含量以HN最大,比LN高44.10%,LA比HA高93.79%,各处理下IAA含量高低为HN>LA>LN>HA。根系形态指标与生理指标之间的相关分析结果表明,根长与还原糖呈极显著正相关(P<0.01),根尖数与12-OPDA呈显著正相关(P<0.05)。【结论】低浓度硝态氮影响根系还原糖,对娃娃菜主根和侧根的伸长产生促进作用;低浓度铵态氮调控娃娃菜根系12-OPDA,可使娃娃菜根系的侧根数量增多。
马玉峰,周忠雄,李雨桐,高雪琴,乔亚丽,张文斌,颉建明,胡琳莉,郁继华. 氮素水平及形态对娃娃菜根系特征及生理指标的影响[J]. 中国农业科学, 2022, 55(2): 378-389.
MA YuFeng,ZHOU ZhongXiong,LI YuTong,GAO XueQin,QIAO YaLi,ZHANG WenBin,XIE JianMing,HU LinLi,YU JiHua. Effects of Nitrogen Level and Form on Root Morphology of Mini Chinese Cabbage and Its Physiological Index[J]. Scientia Agricultura Sinica, 2022, 55(2): 378-389.
表1
氮素形态及浓度对娃娃菜幼苗根系形态的影响"
处理 Treatment | 总根长 Total root length (cm) | 总根体积 Total root volume (cm3) | 总根表面积 Total surface area (cm2) | 总根尖数 Total root tip number |
---|---|---|---|---|
LN (0.1 mmol∙L-1 NO3-) | 78.592±6.390a | 0.032±0.002a | 5.606±0.223a | 71.976±10.539ab |
HN (1.0 mmol∙L-1 NO3-) | 54.984±3.140b | 0.031±0.003a | 4.530±0.192b | 48.000±2.459c |
LA (0.1 mmol∙L-1 NH4+) | 69.341±5.290ab | 0.033±0.002a | 5.317±0.287ab | 78.125±3.449a |
HA (1.0 mmol∙L-1 NH4+) | 35.350±1.004c | 0.019±0.001b | 2.866±0.058c | 53.880±6.997bc |
表2
氮素形态及浓度对娃娃菜幼苗根系铵态氮、硝态氮、还原糖和可溶性糖含量的影响"
处理 Treatment | 硝态氮含量 NO3- content (μg∙g-1 FW) | 铵态氮含量 NH4+ content (μg∙g-1 FW) | 还原糖含量 Reducing sugar content (%) | 可溶性糖含量 Soluble sugar content (%) |
---|---|---|---|---|
LN (0.1 mmol∙L-1 NO3-) | 378.083±35.695a | 655.320±20.607c | 0.067±0.007a | 0.783±0.0467b |
HN (1.0 mmol∙L-1 NO3-) | 328.787±29.394a | 2361.460±99.972b | 0.043±0.003b | 0.703±0.103b |
LA (0.1 mmol∙L-1 NH4+) | 124.377±4.100b | 675.360±43.822c | 0.060±0.006ab | 1.173±0.118a |
HA (1.0 mmol∙L-1 NH4+) | 387.205±0.295a | 2595.957±86.429a | 0.020±0.006c | 0.660±0.036b |
表3
氮素形态及浓度对娃娃菜幼苗根系NO含量及H2O2含量的影响"
处理 Treatment | NO含量 Nitric oxide content (μmol∙g-1 FW) | H2O2含量 Hydrogen peroxide content (μmol∙g-1 FW) |
---|---|---|
LN (0.1 mmol∙L-1 NO3-) | 52.462±3.590a | 0.510±0.023b |
HN (1.0 mmol∙L-1 NO3-) | 44.341±4.495a | 0.641±0.040a |
LA (0.1 mmol∙L-1 NH4+) | 13.809±5.506b | 0.301±0.012c |
HA (1.0 mmol∙L-1 NH4+) | 7.915±0.873b | 0.265±0.013c |
表4
氮素形态及浓度对娃娃菜幼苗根系生根相关酶活性的影响"
处理 Treatment | POD活性 POD Activity (U∙min-1∙g-1 FW) | PPO活性 PPO Activity (U∙min-1∙g-1 FW) | IAAO活性 IAAO Activity (U∙g-1 FW) |
---|---|---|---|
LN (0.1 mmol∙L-1 NO3-) | 710.409±126.831b | 323.223±41.980b | 8.425±0.771c |
HN (1.0 mmol∙L-1 NO3-) | 1580.277±92.126a | 487.847±34.197a | 10.070±0.463c |
LA (0.1 mmol∙L-1 NH4+) | 1717.460±63.977a | 125.969±8.734c | 18.977±0.388b |
HA (1.0 mmol∙L-1 NH4+) | 1759.095±10.864a | 288.979±37.418b | 25.624±0.586a |
表5
氮素形态及浓度对娃娃菜幼苗根系细胞分裂素含量的影响"
处理 Treatment | CTK | |||||
---|---|---|---|---|---|---|
cZR含量 cZR content (ng∙g-1) | IPR含量 IPR content (ng∙g-1) | IP含量 IP content (ng∙g-1) | tZR含量 tZR content (ng∙g-1) | cZ含量 cZ content (ng∙g-1) | tZ含量 tZ content (ng∙g-1) | |
LN (0.1 mmol∙L-1 NO3-) | 46.986±4.348a | 1.741±0.307b | 0.405±0.004a | 0.444±0.052b | 1.129±0.077a | 3.469±0.147b |
HN (1.0 mmol∙L-1 NO3-) | 47.440±4.432a | 2.574±0.224a | 0.437±0.022a | 0.741±0.080a | 1.359±0.194a | 3.551±0.257b |
LA (0.1 mmol∙L-1 NH4+) | 52.372±2.106a | 3.083±0.187a | 0.422±0.006a | 0.608±0.029ab | 1.185±0.120a | 6.334±0.505a |
HA (1.0 mmol∙L-1 NH4+) | 41.828±1.405a | 1.731±0.212b | 0.397±0.012a | 0.443±0.017b | 1.074±0.125a | 4.510±0.608b |
表6
氮素形态及浓度对娃娃菜幼苗根系JA类激素、IAA、SA、ACC和ABA含量的影响"
处理 Treatment | JA | IAA含量 IAA content (ng∙g-1) | SA含量 SA content (ng∙g-1) | ACC含量 ACC content (ng∙g-1) | ABA含量 ABA content (ng∙g-1) | ||
---|---|---|---|---|---|---|---|
12-OPDA含量 12-OPDA content (ng∙g-1) | JA-ILE含量 JA-ILE content (ng∙g-1) | JA含量 JA content (ng∙g-1) | |||||
LN (0.1 mmol∙L-1 NO3-) | 25.393±3.337ab | 0.472±0.036b | 10.804±1.209b | 93.119±11.348b | 202.601±12.412bc | 24.754±1.260c | 2.371±0.193a |
HN (1.0 mmol∙L-1 NO3-) | 16.966±2.090b | 0.728±0.208ab | 16.305±3.735b | 134.180±38.582ab | 277.059±48.162ab | 51.121±3.751a | 2.603±0.348a |
LA (0.1 mmol∙L-1 NH4+) | 32.344±1.749a | 1.623±0.481a | 30.803±5.087a | 120.352±14.078a | 331.004±13.680a | 31.948±0.816b | 2.741±0.116a |
HA (1.0 mmol∙L-1 NH4+) | 20.844±2.659b | 1.618±0.368a | 22.741±4.163ab | 62.133±3.745b | 151.964±3.687c | 31.819±2.344b | 2.405±0.133a |
[1] |
KIBA T, KUDO T, KOJIMA M, SAKAKIBARA H. Hormonal control of nitrogen acquisition: Roles of auxin, abscisic acid, and cytokinin. Journal of Experimental Botany, 2010, 62(4):1399-1409.
doi: 10.1093/jxb/erq410 |
[2] | LEGHARI S J, WAHOCHO N A, LAGHARI G M, LAGHARI A H, LASHARI A A. Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 2016, 10(9):209-218. |
[3] |
OSMONT K S, SIBOUT R, HARDTKE C S. Hidden branches: Developments in root system architecture. Annual Review of Plant Biology, 2007, 58:93-113.
doi: 10.1146/arplant.2007.58.issue-1 |
[4] |
MOCHIZUKI S, JIKUMARU Y, NAKAMURA H, KOIWAI H, SASAKI K, KAMIYA Y, ICHIKAWA H, MINAMI E, NISHIZAWA Y. Ubiquitin ligase EL5 maintains the viability of root meristems by influencing cytokinin-mediated nitrogen effects in rice. Journal of Experimental Botany, 2014, 65(9):2307-2318.
doi: 10.1093/jxb/eru110 |
[5] |
KONG X P, ZHANG C L, ZHENG H H, SUN M, ZHANG F, ZHANG M Y, CUI F H, LV D P, LIU L J, GUO S Y, ZHANG Y M, YUAN X Z, ZHAO S, TIAN H Y, DING Z J. Antagonistic interaction between auxin and SA signaling pathways regulates bacterial infection through lateral root in Arabidopsis. Cell Reports, 2020, 32(8):108060.
doi: 10.1016/j.celrep.2020.108060 |
[6] |
MEIER M, LIU Y, LAY-PRUITT K S, TAKAHASHI H, VON WIRÉN N. Auxin-mediated root branching is determined by the form of available nitrogen. Nature Plants, 2020, 6(9):1136-1145.
doi: 10.1038/s41477-020-00756-2 |
[7] |
MOTTE H, BEECKMAN T. A pHantastic ammonium response. Nature Plants, 2020, 6(9):1080-1081.
doi: 10.1038/s41477-020-00765-1 |
[8] |
LE J, VANDENBUSSCHE F, VAN DER STRAETEN D, VERBELEN J P. In the early response of Arabidopsis roots to ethylene, cell elongation is up- and down-regulated and uncoupled from differentiation. Plant Physiology, 2001, 125(2):519-522.
doi: 10.1104/pp.125.2.519 |
[9] |
KAWA D. Hormonal solution for (root) hair extension. The Plant Cell, 2020, 32(4):799-800.
doi: 10.1105/tpc.20.00038 |
[10] |
HAN X, ZHANG M H, YANG M L, HU Y R. Arabidopsis JAZ proteins interact with and suppress RHD6 transcription factor to regulate jasmonate-stimulated root hair development. The Plant Cell, 2020, 32(4):1049-1062.
doi: 10.1105/tpc.19.00617 |
[11] | SCHERES B, BENFEY P, DOLAN L. Root development. The Arabidopsis Book, 2002, 40:1-18. doi: 10.1199/tab.0101. |
[12] |
STASWICK P E, SU W, HOWELL S H. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. PNAS, 1992, 89(15):6837-6840.
doi: 10.1073/pnas.89.15.6837 |
[13] | 刘莉. 盐胁迫下植物激素对水稻种子萌发及幼苗根系生长的调控机理研究[D]. 武汉: 华中农业大学, 2018. |
LIU L. The regulation and mechanism of phytohormone on rice seed germination and seedling root growth under salinity[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese) | |
[14] |
MENG Q, ZHANG W Q, HU X, SHI X Y, CHEN L L, DAI X L, QU H Y, XIA Y W, LIU W, GU M, XU G H. Two ADP-glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice. The Plant Journal, 2020, 104(5):1269-1284.
doi: 10.1111/tpj.v104.5 |
[15] |
PIGNOCCHI C, IVAKOV A, FEIL R, TRICK M, PIKE M, WANG T L, LUNN J E, SMITH A M. Restriction of cytosolic sucrose hydrolysis profoundly alters development, metabolism, and gene expression in Arabidopsis roots. Journal of Experimental Botany, 2020, 72(5):1850-1863.
doi: 10.1093/jxb/eraa581 |
[16] |
MISHRA B S, SINGH M, AGGRAWAL P, LAXMI A. Glucose and auxin signaling interaction in controlling Arabidopsis thaliana seedlings root growth and development. PLoS ONE, 2009, 4(2):e4502.
doi: 10.1371/journal.pone.0004502 |
[17] |
STÖHR C, ULLRICH W R. Generation and possible roles of NO in plant roots and their apoplastic space. Journal of Experimental Botany, 2002, 53(379):2293-2303.
doi: 10.1093/jxb/erf110 |
[18] |
LIAO W B, HUANG G B, YU J H, ZHANG M L, SHI X L. Nitric oxide and hydrogen peroxide are involved in indole-3-butyric acid-induced adventitious root development in marigold. The Journal of Horticultural Science and Biotechnology, 2011, 86(2):159-165.
doi: 10.1080/14620316.2011.11512742 |
[19] |
DUNAND C, CRÈVECOEUR M, PENEL C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. The New Phytologist, 2007, 174(2):332-341.
doi: 10.1111/nph.2007.174.issue-2 |
[20] |
JOO J H, BAE Y S, LEE J S. Role of auxin-induced reactive oxygen species in root gravitropism1. Plant Physiology (Bethesda), 2001, 126(3):1055-1060.
doi: 10.1104/pp.126.3.1055 |
[21] | MOLINA-FAVERO C, CREUS C, LANTERI M L, CORREA- ARAGUNDE N, LOMBARDO M, BARASSI C, LAMATTINA L. Nitric oxide and plant growth promoting Rhizobacteria: Common features influencing root growth and development. Advances in Botanical Research, 2007, 46:1-33. doi: 10.1016/S0065-2296(07)46001-3. |
[22] |
LIAO W B, XIAO H L, ZHANG M L. Effect of nitric oxide and hydrogen peroxide on adventitious root development from cuttings of ground-cover Chrysanthemum and associated biochemical changes. Journal of Plant Growth Regulation, 2010, 29(3):338-348.
doi: 10.1007/s00344-010-9140-5 |
[23] |
YAN Y H, LI J L, ZHANG X Q, YANG W Y, WAN Y, MA Y M, ZHU Y Q, PENG Y, HUANG L K. Effect of naphthalene acetic acid on adventitious root development and associated physiological changes in stem cutting of Hemarthria compressa. PLoS ONE, 2014, 9(3):e90700. doi: 10.1371/journal.pone.0090700.
doi: 10.1371/journal.pone.0090700 |
[24] |
BAQUE M A, HAHN E J, PAEK K Y. Growth, secondary metabolite production and antioxidant enzyme response of Morinda citrifolia adventitious root as affected by auxin and cytokinin. Plant Biotechnology Reports, 2010, 4(2):109-116.
doi: 10.1007/s11816-009-0121-8 |
[25] |
HU L L, YU J H, LIAO W B, ZHANG G B, XIE J M, LV J, XIAO X M, YANG B L, ZHOU R H, BU R F. Moderate ammonium:nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Scientia Horticulturae, 2015, 186:143-153.
doi: 10.1016/j.scienta.2015.02.020 |
[26] | 卿悦, 李廷轩, 叶代桦. 无机氮处理对矿山生态型水蓼氮积累及根系形态的影响. 草业学报, 2020, 29(1):203-210. |
QING Y, LI T X, YE D H. Effects of inorganic N on the N accumulation and root morphology of a mining ecotype of Polygonum hydropiper. Acta Prataculturae Sinica, 2020, 29(1):203-210. (in Chinese) | |
[27] | 张婧. 铵硝氮素比例影响辣椒生长与果实代谢的机理研究[D]. 兰州: 甘肃农业大学, 2020. |
ZHANG J. The mechanism of ammonium and nitrate nitrogen ratio on the growth and fruit metabolism of Capsicum annuum L[D]. Lanzhou: Gansu Agricultural University, 2020.(in Chinese) | |
[28] | 张小莉, 王鹏程, 宋纯鹏. 植物细胞过氧化氢的测定方法. 植物学通报, 2009, 44(1):103-106. |
ZHANG X L, WANG P C, SONG C P. Methods of detecting hydrogen peroxide in plant cells. Chinese Bulletin of Botany, 2009, 44(1):103-106. (in Chinese) | |
[29] | 高俊凤. 植物生理学实验指导, 北京: 高等教育出版社, 2006. |
GAO J F. Experimental Guidance for Plant Physiology. Beijing: Higher Education Press, 2006. (in Chinese) | |
[30] |
NACRY P, BOUGUYON E, GOJON A. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant and Soil, 2013, 370(1):1-29.
doi: 10.1007/s11104-013-1645-9 |
[31] |
YI J, GAO J P, ZHANG W Z, ZHAO C, WANG Y, ZHEN X X. Differential uptake and utilization of two forms of nitrogen in Japonica rice cultivars from north-eastern China. Frontiers in Plant Science, 2019, 10:1061.
doi: 10.3389/fpls.2019.01061 |
[32] |
GRUBER B D, GIEHL R F H, FRIEDEL S, VON WIRÉN N. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiology, 2013, 163(1):161-179.
doi: 10.1104/pp.113.218453 |
[33] |
KONG D Y, HAO Y L, CUI H C. The WUSCHEL related homeobox protein WOX7 regulates the sugar response of lateral root development in Arabidopsis thaliana. Molecular Plant, 2016, 9(2):261-270.
doi: 10.1016/j.molp.2015.11.006 |
[34] |
DEN HERDER G, VAN ISTERDAEL G, BEECKMAN T, DE SMET I. The roots of a new green revolution. Trends in Plant Science, 2010, 15(11):600-607.
doi: 10.1016/j.tplants.2010.08.009 |
[35] |
PIERIK R, TESTERINK C. The art of being flexible: How to escape from shade, salt and drought. Plant Physiology, 2014, 166(1):5-22.
doi: 10.1104/pp.114.239160 |
[36] |
FUJIKAKE H, YAMAZAKI A, OHTAKE N, SUEYOSHI K, MATSUHASHI S, ITO T, MIZUNIWA C, KUME T, HASHIMOTO S, ISHIOKA N S, WATANABE S, OSA A, SEKINE T, UCHIDA H, TSUJI A, OHYAMA T. Quick and reversible inhibition of soybean root nodule growth by nitrate involves a decrease in sucrose supply to nodules. Journal of Experimental Botany, 2003, 54(386):1379-1388.
doi: 10.1093/jxb/erg147 |
[37] |
ROLLAND F, BAENA-GONZALEZ E, SHEEN J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology, 2006, 57:675-709.
doi: 10.1146/arplant.2006.57.issue-1 |
[38] | KIRCHER S, SCHOPFER P. Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proceedings of the National Academy of SciencesProceedings of the National Academy of Sciences, 2012, 109(28):11217-11221. |
[39] |
CAI X T, XU P, ZHAO P X, LIU R, YU L H, XIANG C B. Arabidopsis ERF109 mediates cross-talk between jasmonic acid and auxin biosynthesis during lateral root formation. Nature Communications, 2014, 5:5833.
doi: 10.1038/ncomms6833 |
[40] | YUAN T T, XU H H, ZHANG K X, GUO T T, LU Y T. Glucose inhibits root meristem growth via ABA INSENSITIVE 5, which represses PIN1 accumulation and auxin activity in Arabidopsis. Plant, Cell & Environment, 2014, 37(6):1338-1350. |
[41] |
OGURA T, GOESCHL C, FILIAULT D, MIREA M, SLOVAK R, WOLHRAB B, SATBHAI S B, BUSCH W. Root system depth in Arabidopsis is shaped by EXOCYST70A3 via the dynamic modulation of auxin transport. Cell, 2019, 178(2):400-412.
doi: 10.1016/j.cell.2019.06.021 |
[42] | 黄秀, 叶昌, 燕金香, 李福明, 褚光, 徐春梅, 陈松, 章秀福, 王丹英. 不同氮吸收效率水稻品种的苗期铵吸收特性及生长差异分析. 中国农业科学, 2021, 54(7):1455-1468. |
HUANG X, YE C, YAN J X, LI F M, CHU G, XU C M, CHEN S, ZHANG X F, WANG D Y. Analysis of ammonium uptake and growth differences of rice varieties with different nitrogen recovery efficiency at seedling stage. Scientia Agricultura Sinica, 2021, 54(7):1455-1468. (in Chinese) | |
[43] | 杨娜. 氮素(NH4+,NO3-)和植物激素在调控拟南芥根系构型中的相互作用[D]. 南京: 南京农业大学, 2010. |
YANG N. Interaction between nitrogen (NH4+, NO3-) and plant hormones in regulation of root system architecture in Arabidopsis[D]. Nanjing: Nanjing Agricultural University, 2010. (in Chinese) | |
[44] |
YANG N, ZHU C H, GAN L J, NG D, XIA K. Ammonium- stimulated root hair branching is enhanced by methyl jasmonate and suppressed by ethylene in Arabidopsis thaliana. Journal of Plant Biology, 2011, 54(2):92-100.
doi: 10.1007/s12374-011-9147-x |
[45] |
ZHU C H, GAN L J, SHEN Z G, XIA K. Interactions between jasmonates and ethylene in the regulation of root hair development in Arabidopsis. Journal of Experimental Botany, 2006, 57(6):1299-1308.
doi: 10.1093/jxb/erj103 |
[46] | 张德健, 夏仁学, 曹秀. 矿质养分和激素对根毛生长发育的影响及作用机制. 植物营养与肥料学报, 2016, 22(3):802-810. |
ZHANG D J, XIA R X, CAO X. Effects and mechanism of mineral nutrient and phytohormone on root hair development. Plant Nutrition and Fertilizer Science, 2016, 22(3):802-810. (in Chinese) | |
[47] |
MÄHÖNEN A P, BISHOPP A, HIGUCHI M, NIEMINEN K M, KINOSHITA K, TÖRMÄKANGAS K, IKEDA Y, OKA A, KAKIMOTO T, HELARIUTTA Y. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science, 2006, 311(5757):94-98.
doi: 10.1126/science.1118875 |
[48] | 李想. 细胞分裂素抑制拟南芥侧根起始及调控根系发育的分子机理研究[D]. 杭州: 浙江大学, 2006. |
LI X. Study on the molecular mechanisms of cytokinin repression of lateral root initiation and regulation of root system development in Arabidosis [D]. Hangzhou: Zhejiang University, 2006. (in Chinese) | |
[49] | 童敏. 一种新型植物生长调节剂CRZ-1对不同生长条件下小麦幼苗的影响[D]. 南京: 南京师范大学, 2011. |
TONG M. The effect of a new plant growth regulator CRZ-1 on wheat seedlings under different growth conditions[D]. Nanjing: Nanjing Normal University, 2011. (in Chinese) | |
[50] |
LIN P C, HWANG S G, ENDO A, OKAMOTO M, KOSHIBA T, CHENG W H. Ectopic expression of ABSCISIC ACID 2/GLUCOSE INSENSITIVE 1 in Arabidopsis promotes seed dormancy and stress tolerance. Plant Physiology, 2006, 143(2):745-758.
doi: 10.1104/pp.106.084103 |
[51] | 原牡丹, 侯智霞, 翟明普, 苏艳. IAA分解代谢相关酶(IAAO、POD)的研究进展. 中国农学通报, 2008, 24(8):88-92. |
YUAN M D, HOU Z X, ZHAI M P, SU Y. The research advances on Indole-3-acetic acid (IAA) catabolism related enzymes: IAA oxidase (IAAO), peroxidase (POD). Chinese Agricultural Science Bulletin, 2008, 24(8):88-92. (in Chinese) | |
[52] |
EBRAHIMZADEH H, ABRISHAMCHI P. Changes in IAA, phenolic compounds, peroxidase, IAA oxidase, and polyphenol oxidase in relation to flower formation in Crocus sativus. Russian Journal of Plant Physiology, 2001, 48(2):190-195.
doi: 10.1023/A:1009048000109 |
[53] | 李娇. 一氧化氮参与硝酸盐调控不同硝响应型水稻侧根生长的机制研究[D]. 南京: 南京农业大学, 2014. |
LI J. Physiological mechanisms of nitric oxide participating lateral root growth regulated by partial nitrate nutrition in rice genotypes with different nitrate responsivity[D]. Nanjing : Nanjing Agricultural University, 2014. (in Chinese) | |
[54] | 武晓东. 欧美山杨杂种微扦插技术及生根机理研究[D]. 哈尔滨: 东北林业大学, 2011. |
WU X D. Study on micro-cutting of Populu stremula×P.emuloides and its rooting mechanism[D]. Harbin: Northeast Forestry University, 2011. (in Chinese) | |
[55] |
VAN CAMP W, VAN MONTAGU M, INZÉ D. H2O2 and NO: redox signals in disease resistance. Trends in Plant Science, 1998, 3(9):330-334.
doi: 10.1016/S1360-1385(98)01297-7 |
[56] | 李师翁, 薛林贵, 冯虎元, 徐世键, 安黎哲. 植物中的H2O2信号及其功能. 中国生物化学与分子生物学报, 2007(10):804-810. |
LI S W, XUE L G, FENG H Y, XU S J, AN L Z. Hydrogen peroxide signaling and its biological importance in plants. Chinese Journal of Biochemistry and Molecular Biology, 2007(10):804-810. (in Chinese) | |
[57] |
GOLD A J, PARKER D, WASKOM R M, DOBROWOLSKI J, O'NEILL M, GROFFMAN P M, ADDY K, BARBER M, BATIE S, BENHAM B, BIANCHI M, BLEWETT T, EVENSEN C, FARRELL-POE K, GARDNER C, GRAHAM W, HARRISON J, HARTER T, KUSHNER J, LOWRANCE R, et al. Advancing water resource management in agricultural, rural, and urbanizing watersheds: Why land-grant universities matter. Journal of Soil and Water Conservation, 2013, 68(4):337-348.
doi: 10.2489/jswc.68.4.337 |
[58] |
YUAN L X, LOQUÉ D, KOJIMA S, ISHIYAMA K, RAUCH S, INOUE E, TAKAHASHI H, VON WIRÉN N. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters. The Plant Cell, 2007, 19(8):2636-2652.
doi: 10.1105/tpc.107.052134 |
[1] | 沙月霞, 黄泽阳, 马瑞. 嗜碱假单胞菌Ej2对稻瘟病的防治效果及对水稻内源激素的影响[J]. 中国农业科学, 2022, 55(2): 320-328. |
[2] | 王君杰,田翔,秦慧彬,王海岗,曹晓宁,陈凌,刘思辰,乔治军. 光周期对糜子生长发育及叶片内源激素的调控效应[J]. 中国农业科学, 2021, 54(2): 286-295. |
[3] | 李艳林,SHAHID Iqbal,侍婷,宋娟,倪照君,高志红. 梅PmARF17克隆及其在花发育中与内源激素的调控模式[J]. 中国农业科学, 2021, 54(13): 2843-2857. |
[4] | 刘海英,冯必得,茹振钢,陈向东,黄培新,邢晨涛,潘茵茵,甄俊琦. BNS和BNS366小麦雄性不育与内源激素的关系[J]. 中国农业科学, 2021, 54(1): 1-18. |
[5] | 郭美俊,白亚青,高鹏,申洁,董淑琦,原向阳,郭平毅. 二甲四氯胁迫对谷子幼苗叶片衰老特性和 内源激素含量的影响[J]. 中国农业科学, 2020, 53(3): 513-526. |
[6] | 葛霞,徐瑞,李梅,田甲春,李守强,程建新,田世龙. 香芹酮对马铃薯种薯发芽的调控机制[J]. 中国农业科学, 2020, 53(23): 4929-4939. |
[7] | 陈鹏飞, 梁飞. 基于低空无人机影像光谱和纹理特征的棉花氮素营养诊断研究[J]. 中国农业科学, 2019, 52(13): 2220-2229. |
[8] | 郭芸珲,于媛媛,温立柱,孙翠慧,孙宪芝,王文莉,孙霞,郑成淑. 硝态氮影响菊花根系形态结构变化的分子基础[J]. 中国农业科学, 2017, 50(9): 1684-1693. |
[9] | 凌启鸿,王绍华,丁艳锋,李刚华 . 关于用水稻“顶3顶4叶叶色差”作为高产群体叶色诊断统一指标的再论证[J]. 中国农业科学, 2017, 50(24): 4705-4713. |
[10] | 刘 涛,鲁剑巍,任 涛,汪 威,王 振,王少华. 适宜氮水平下冬油菜苗期不同叶位叶片光合氮分配特征[J]. 中国农业科学, 2016, 49(18): 3532-3541. |
[11] | 赵春波,宋述尧,赵靖,张雪梅,张越,张松婷. 北方地区不同黄瓜品种氮素吸收与利用效率的差异[J]. 中国农业科学, 2015, 48(8): 1569-1578. |
[12] | 刘悦善,李成,王东霞,徐刚,王玉萍,程李香,张俊莲,王蒂,张峰. 加工型马铃薯品种微型薯种薯贮藏期内源激素含量、阈值和休眠期相关性分析[J]. 中国农业科学, 2015, 48(2): 262-269. |
[13] | 李秀,巩彪,徐坤. 外源亚精胺对高温胁迫下生姜叶片内源激素及叶绿体超微结构的影响[J]. 中国农业科学, 2015, 48(1): 120-129. |
[14] | 周宇飞, 王德权, 陆樟镳, 王娜, 王艺陶, 李丰先, 许文娟, 黄瑞冬. 干旱胁迫对持绿性高粱光合特性和内源激素 ABA、CTK含量的影响[J]. 中国农业科学, 2014, 47(4): 655-663. |
[15] | 王海波,赵君全,王孝娣,史祥宾,王宝亮,郑晓翠,刘凤之. 新梢内源激素变化对设施葡萄花芽孕育的影响[J]. 中国农业科学, 2014, 47(23): 4695-4705. |
|