中国农业科学 ›› 2020, Vol. 53 ›› Issue (19): 4070-4082.doi: 10.3864/j.issn.0578-1752.2020.19.019
张海亮(),刘澳星,米思远,李想,罗汉鹏,鄢新义,王雅春(
)
收稿日期:
2019-11-08
接受日期:
2020-01-13
出版日期:
2020-10-01
发布日期:
2020-10-19
通讯作者:
王雅春
作者简介:
张海亮,Tel:18813071851;E-mail: 基金资助:
ZHANG HaiLiang(),LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun(
)
Received:
2019-11-08
Accepted:
2020-01-13
Online:
2020-10-01
Published:
2020-10-19
Contact:
YaChun WANG
摘要:
长寿性状是奶牛育种中最重要的功能性状之一,除产量性状之外,长寿性状具有最大的经济价值。由于遗传力低、数据分布特殊和性状表现晚等特点,长寿性状也是选育难度最大的性状之一。自上世纪50年代起,长寿性状就进入了各国奶牛育种家的视野,针对长寿性状的研究持续进行;上世纪90年代后,各奶业发达国家陆续将长寿性状纳入其奶牛综合选择指数。目前,我国奶牛综合选择指数(CPI)中尚不包含长寿性状,对长寿性状的研究也处于起步阶段。文章通过整理分析奶牛长寿性状的有关研究,从性状定义、遗传评估方法、与其他性状的关系、遗传标记、性状选育策略等方面系统介绍了长寿性状的研究和选育情况。通过汇总有关长寿性状与其他性状遗传相关的研究,阐述了长寿性状与其他性状之间的复杂关系;通过收集各国奶牛选育方案中的相关信息,重点介绍了各主要奶业发达国家对长寿性状的选育策略。此外,本文还通过收集在我国奶牛群体中针对长寿性状开展的研究,概述了奶牛长寿性状在我国的研究现状。长寿性状有许多不同的定义,可使用不同的模型对其进行遗传评估,包括线性模型、阈模型、生存分析模型和随机回归模型等。长寿性状与产量、体型、繁殖、健康和管理类性状等存在低到中等的遗传相关,线性体型性状中,与泌乳系统有关的体型性状与长寿性状的遗传相关较高;繁殖和健康性状表现更好的奶牛,其长寿性状通常表现更好;长寿性状与其他性状之间的遗传关系受牛群选育方向的影响较大,在不同群体中,长寿性状与同一性状的遗传相关不尽相同。奶业发达国家的奶牛综合选择指数中均包含长寿性状,这些国家除了使用直接长寿进行选择之外,部分国家还同时采用间接选择的方法对长寿性状进行选育,常用于间接选择长寿性的其他性状主要包括泌乳系统、腰强度、尻角度、肢蹄和乳房炎抗性等。在不同群体中,均发现了大量与长寿性状相关的遗传标记,其中大多数标记都定位在已报道的与繁殖、疾病和体型等性状相关的遗传区域内。文章还提出了从数据收集、遗传参数估计、遗传标记挖掘、评估模型和选择策略探讨等方面针对我国奶牛群体进行长寿性状研究的必要性。
张海亮,刘澳星,米思远,李想,罗汉鹏,鄢新义,王雅春. 奶牛育种中的长寿性状[J]. 中国农业科学, 2020, 53(19): 4070-4082.
ZHANG HaiLiang,LIU AoXing,MI SiYuan,LI Xiang,LUO HanPeng,YAN XinYi,WANG YaChun. A Review on Longevity Trait in Dairy Cattle Breeding[J]. Scientia Agricultura Sinica, 2020, 53(19): 4070-4082.
表1
长寿性状全基因组关联分析研究"
作者 Author | 品种 Breed | 性状定义 Trait definition | 关联分析表型 Phenotype | 分析方法 Analysis method | 显著SNP所在染色体 Chromosome of significant SNP | 候选基因 Candidate gene |
---|---|---|---|---|---|---|
STERI [ | 荷斯坦牛 Holstein | 生产寿命 Productive life | 表型离差 Trait deviations | 简单回归 Simple regression | 16、30 | UBIAD1、MTOR、ANGPTL7、EXOSC10、SRM、MASP2、TARDBP、CASZ1、GPC3、PHF6 |
在群寿命 Herd life | — | |||||
产犊次数 The number of calving | 16、30 | |||||
NAYERI [ | 荷斯坦牛 Holstein | 在群寿命 Herd life | 逆回归育种值 Deregressed proof | 单标记回归 Single SNP regression | 5、6、7、14、18、 20、21 | CTU1、NPFFR2 |
间接长寿性 Indirect longevity | 5、6、18 | NPFFR2 | ||||
存活率 Survival | 6、7、14、18、20、 21 | — | ||||
HAY [ | 合成品种 Composite breed | 生产寿命 Productive life | 校正表型 Corrected phenotypes | 单标记回归 Single SNP regression | 1、2、3、8、9、 11、19、25 | GBE1、GTDC1、ZEB2、CTNNA2、REG3A、REG3G、BTBD17、CD300A、CD300LB、CDR2L、FADS6、FDXR、GPRC5C、GRIN2C、HID1 |
贝叶斯 Bayesian | 1、2、3、9、11、15、19、20、25、29 | |||||
SAOWAPHAK[ | 杂交荷斯坦牛 Cross Holstein | 生产寿命 Productive life | 性状表型值 Phenotype | 一步法 Single step GWAS | 5、X | SYT1、DOCK11、KLHL13、IL13RA1 |
ZHANG[ | 荷斯坦牛 Holstein | 多胎次生产寿命 Partial productive life | 逆回归育种值 Deregressed proof | 线性混合模型 Linear mixed model | 5、6、9、10、18、 23 | NPFFR2、vitamin D-buinding protein、PPP1R14C、GCH1、ZNF613 ZNF617 |
北欧红牛 Nordic Red dairy cattle | 6、21、23、25 | CCDC149、LGI2、KCNK16 | ||||
娟姗牛 Jersey | — | — | ||||
MéSZáROS [ | 西门塔尔牛 Simmental | 生产寿命 Productive life | 逆回归育种值 Deregressed proof | 单标记回归 Single SNP regression | 6、13、14、19、21 | DERL1、SNTG1、LOC614437、ALB、AFP、LOC100140503、ADAMTS3、E2F1、RALY、SYT10、NTRK2 |
COLE[ | 荷斯坦牛 Holstein | 生产寿命 Productive life | 估计传递力 Predicted transmitting ability | 单标记回归 Single SNP regression | 7、X | INSR、LOC520057 |
表2
各国长寿性状遗传评估及选育情况"
国家/地区 Country/region | 性状定义 Trait definition | 遗传评估方法 Methods of genetic evaluation | 指数中的权重 Weight in index |
---|---|---|---|
加拿大 Canada | 直接长寿:头胎产犊 - 120 d、120- 240 d、240 d-2胎产犊、2胎产犊 - 3胎产犊、3胎产犊- 4胎产犊期间的存活状态,共5个性状 Direct longevity: a total 5 traits, survival status from the 1st calving to day 120, day 120 to day 240, day 240 to 2nd calving, 2nd calving to 3rd calving, and 3rd calving to 4th calving | 五性状 - BLUP - 动物模型 5 traits - BLUP - Animal model | 8%(LPI,2019) |
间接长寿:包括体细胞评分、泌乳速度、不返情率、产犊至首配间隔和部分体型性状 Indirect longevity: including somatic cell score, milking speed, non-return rate, calving to first service interval and some type traits | |||
美国 US | 直接长寿:生产寿命 Direct longevity: productive life | 单性状 - BLUP - 动物模型 Single trait - BLUP - Animal model | 4%(TPI,2017) |
间接长寿:包括体细胞评分、产奶量、乳脂量、乳蛋白量和部分体型性状 Indirect longevity: including somatic cell score, milk yield, milk fat yield, milk protein yield and some type traits | 3%(TPI,2017) | ||
荷兰 Netherlands | 头胎产犊后1 - 72月龄期间的存活状态 Survival status from the first calving to the age of 72 months | 单性状 - 随机回归 - BLUP - 动物模型 Single trait - Random regression - BLUP - Animal model | 8%(NVI,2019) |
德国 Germany | 前3胎次内泌乳0-49 d、50- 249 d、250 d -下次产犊期间的存活状态,共9个性状 A total of 9 traits, survival status from day 0 to 49, day 50 to 249 and day 250 to the next calving after the current calving among the first 3 lactations | 多性状 - BLUP - 动物模型 Muti-traits - BLUP - Animal model | 20%(RZG,2018) |
法国 France | 直接长寿:生产寿命 Direct longevity: productive life | 单性状-生存分析-公畜外祖父模型 Single trait - Survival analysis - Sire-maternal grand sire model | 5%(ISU,2019) |
间接长寿:包括体细胞数、临床乳房炎、泌乳速度、部分繁殖和体型性状 Indirect longevity: including somatic cell count, clinical mastitis, some reproduction and type traits | — | ||
北欧 Nodic | 头胎产犊至2、3、4、5、6胎产犊时生产寿命,共5个性状 A total of 5 traits, the partial productive life from the first calving to the 2nd, 3rd, 4th, 5th, 6th calving | 多性状 - BLUP - 动物模型 Muti-traits - BLUP - Animal model | 6%(NTM,2018) |
新西兰 New Zealand | 直接长寿:头胎产犊至2、3、4胎产犊的存活状态,共3个性状 Direct longevity: a total of 3 traits, survival status from the first calving to the 2nd, 3rd, 4th calving | 多性状 - BLUP - 动物模型 Muti-traits - BLUP - Animal model | 6%(BW,2016) |
间接长寿:包括头胎乳蛋白量、头胎体况评分、头胎泌乳速度、头胎体细胞数和部分体型性状等 Indirect longevity: including milk protein yield, body condition score, milking speed and somatic cell count in 1st lactation, and some type traits | — | ||
澳大利亚 Australia | 前7胎各胎次内母牛的存活状态,共7个性状 A total of 7 traits, survival status from the first calving to the 2nd, 3rd, 4th, 5th, 6th, 7th, 8th calving | 多性状 - BLUP - 动物模型 Muti-traits - BLUP - Animal model | 8%(BPI,2014) |
[1] | MURRAY B. Finding the tools to achieve longevity in Canadian dairy cows. WCDS Advances in Dairy Technology, 2013, 25: 15-28. |
[2] |
JAIRATH L K, HAYES J F, CUE R I. Multitrait restricted maximum likelihood estimates of genetic and phenotypic parameters of lifetime performance traits for Canadian Holsteins. Journal of Dairy Science, 1994, 77(1): 303-312. DOI: 10.3168/jds.S0022-0302(94)76955-1.
doi: 10.3168/jds.S0022-0302(94)76955-1 pmid: 8120199 |
[3] |
ESSL A. Longevity in dairy cattle breeding: a review. Livestock Production Science, 1998, 57(1): 79-89. DOI: 10.3168/jds.S0022- 0302(94)76955-1.
doi: 10.1016/S0301-6226(98)00160-2 |
[4] |
BROTHERSTONE S, VEERKAMPEERKAMP R F, Hill W G. Genetic parameters for a simple predictor of the lifespan of Holstein- Friesian dairy cattle and its relationship to production. Animal Science, 1997, 65(1): 31-37. DOI: 10.1017/S135772980001626X.
doi: 10.1017/S135772980001626X |
[5] |
WEIGEL K A, PALMER R W, CARAVIELLO D Z. Investigation of factors affecting voluntary and involuntary culling in expanding dairy herds in Wisconsin using survival analysis. Journal of Dairy Science, 2003, 86(4): 1482-1486. DOI: 10.3168/jds.S0022-0302(03)73733-3.
pmid: 12741574 |
[6] |
SEWALEM A, KISTEMAKER G J, DUCROCQ V. Genetic analysis of herd life in Canadian dairy cattle on a lactation basis using a Weibull proportional hazards model. Journal of Dairy Science, 2005, 88(1): 368-375. DOI: 10.3168/jds.S0022-0302(05)72696-5.
doi: 10.3168/jds.S0022-0302(05)72696-5 pmid: 15591401 |
[7] |
CARAVIELLO D Z, WEIGEL K A, GIANOLA D. Comparison between a Weibull proportional hazards model and a linear model for predicting the genetic merit of US Jersey sires for daughter longevity. Journal of Dairy Science, 2004, 87(5): 1469-1476. DOI: 10.3168/ jds.S0022-0302(04)73298-1.
doi: 10.3168/jds.S0022-0302(04)73298-1 pmid: 15290996 |
[8] |
DUCROCQ V, QUAAS R L, POLLAK E J. Length of productive life of dairy cows. 2. variance component estimation and sire evaluation. Journal of Dairy Science, 1988, 71(11): 3071-3079. DOI: 10.3168/ jds.S0022-0302(88)79907-5.
doi: 10.3168/jds.S0022-0302(88)79907-5 |
[9] |
TSURUTA S, MISZTALisztal I, LAWLOR T J. Changing definition of productive life in US Holsteins: effect on genetic correlations. Journal of Dairy Science, 2005, 88(3): 1156-1165. DOI: 10.3168/ jds.S0022-0302(05)72782-X.
pmid: 15738249 |
[10] | 李想, 鄢新义, 罗汉鹏, 刘林, 郭刚, 王新宇, 王雅春. 不同模型估计中国荷斯坦牛生产寿命遗传参数. 畜牧兽医学报, 2019, 50(06): 1162-1170. DOI: 10.11843/j.issn.0366-6964.2019.06.006. |
LI X, YAN X Y, LUO H P, LIU L, GUO G, WANG X Y, WANG Y C. Genetic parameters for productive life of Chinese Holsteins by different models. Chinese Journal of Animal and Veterinary Sciences. 2019, 50(06): 1162-1170. DOI: 10.11843/j.issn.0366-6964.2019.06. 006. (in Chinese) | |
[11] |
SHORT T H, LAWLOR T J. Genetic parameters of conformation traits, milk yield, and herd life in Holsteins. Journal of Dairy Science, 1992, 75(7): 1987-1998. DOI: 10.3168/jds.S0022-0302(92)77958-2.
doi: 10.3168/jds.S0022-0302(92)77958-2 pmid: 1500592 |
[12] |
VISSCHER P M, GODDARD M E. Genetic parameters for milk yield, survival, workability, and type traits for Australian dairy cattle. Journal of Dairy Science, 1995, 78(1): 205-220. DOI: 10.3168/jds. S0022-0302(95)76630-9.
pmid: 7738256 |
[13] |
JAIRATH L, DEKKERS J C, SCHAEFFER L R. Genetic evaluation for herd life in Canada. Journal of Dairy Science, 1998, 81(2): 550-562. DOI: 10.3168/jds.S0022-0302(98)75607-3.
doi: 10.3168/jds.S0022-0302(98)75607-3 pmid: 9532510 |
[14] |
BOETTCHER P J, JAIRATH L K, DEKKERS J C. Comparison of methods for genetic evaluation of sires for survival of their daughters in the first three lactations. Journal of Dairy Science, 1999, 82(5): 1034. DOI: 10.3168/jds.S0022-0302(99)75324-5.
doi: 10.3168/jds.S0022-0302(99)75324-5 pmid: 10342243 |
[15] |
VEERKAMP R F, BROTHERSTONE S, ENGEL B. Analysis of censored survival data using random regression models. Animal Science, 2001, 72(1): 1-10. DOI: 10.1017/S1357729800055491.
doi: 10.1017/S1357729800055491 |
[16] |
PELT M L VAN, MEUWISSEN T H E, JONG G DE. Genetic analysis of longevity in Dutch dairy cattle using random regression. Journal of Dairy Science, 2015, 98(6): 4117-4130. DOI: 10.3168/jds. 2014-9090.
doi: 10.3168/jds.2014-9090 pmid: 25892695 |
[17] |
IMBAYARWO-CHIKOSI V E, DZAMA K, HALIMANI T E. Genetic prediction models and heritability estimates for functional longevity in dairy cattle. South African Journal of Animal Science, 2015, 45(2): 105-121. DOI: 10.4314/sajas.v45i2.1.
doi: 10.4314/sajas.v45i2.1 |
[18] |
SASAKI O. Estimation of genetic parameters for longevity traits in dairy cattle: A review with focus on the characteristics of analytical models. Animal Science Journal, 2013, 84(6): 449-460. DOI: 10.1111/asj.12066.
pmid: 23607602 |
[19] |
VOLLEMA A R, GROEN A F. A comparison of breeding value predictors for longevity using a linear model and survival analysis. Journal of Dairy Science, 1998, 81(12): 3315-3320. DOI: 10.3168/jds.S0022-0302(98)75897-7.
doi: 10.3168/jds.S0022-0302(98)75897-7 pmid: 9891278 |
[20] |
LUBBERS R, BROTHERSTONE S, DUCROCQ V P. A comparison of a linear and proportional hazards approach to analyse discrete longevity data in dairy cows. Animal Science, 2000, 70(2): 197-206. DOI: 10.1017/S1357729800054667.
doi: 10.1017/S1357729800054667 |
[21] |
VOLLEMA A R, GROEN A F. Genetic correlations between longevity and conformation traits in an upgrading dairy cattle population. Journal of Dairy Science, 1997, 80(11): 3006-3014. DOI: 10.3168/jds.S0022-0302(97)76267-2.
pmid: 9406094 |
[22] |
ZAVADILOA L, STIPKOVA M. Genetic correlations between longevity and conformation traits in the Czech Holstein population. Czech Journal of Animal Science, 2012, 57(3): 125-136. DOI: 10.17221/5566-CJAS.
doi: 10.17221/CJAS |
[23] |
ZAVADILOA L, NEMCOVA E, STIPKOVA M. Relationships between longevity and conformation traits in Czech Fleckvieh cows. Czech Journal of Animal Science, 2009, 54(9): 385-394. DOI: 10. 17221/1685-CJAS.
doi: 10.17221/CJAS |
[24] |
CRUICKSHANK J, WEIGEL K A, DENTINE M R. Indirect prediction of herd life in Guernsey dairy cattle. Journal of Dairy Science, 2002, 85(5): 1307-1313. DOI: 10.3168/jds.S0022-0302(02) 74195-7.
doi: 10.3168/jds.S0022-0302(02)74195-7 pmid: 12086068 |
[25] |
VUKASINOVIC N, MOLL J, KUNZI N. Genetic relationships among longevity, milk production, and type traits in Swiss Brown cattle. Livestock Production Science, 1995, 41(1): 11-18. DOI: 10.1016/0301-6226(94)00044-8.
doi: 10.1016/0301-6226(94)00044-8 |
[26] |
WEIGEL K A, LAWLOR J T J, VANRADEN P M. Use of linear type and production data to supplement early predicted transmitting abilities for productive life. Journal of Dairy Science, 1998, 81(7): 2040-2044. DOI: 10.3168/jds.S0022-0302(98)75778-9.
doi: 10.3168/jds.S0022-0302(98)75778-9 pmid: 9710774 |
[27] |
SETATI M M, NORRIS D, BANGA C B. Relationships between longevity and linear type traits in Holstein cattle population of Southern Africa. Tropical Animal Health and Production, 2004, 36(8): 807-814. DOI: 10.1023/B:TROP.0000045965.99974.9c.
doi: 10.1023/B:TROP.0000045965.99974.9c pmid: 15643816 |
[28] |
TSURUTA S, MISZTAL I, LAWLOR T J. Genetic correlations among production, body Size, udder, and productive life traits over time in Holsteins. Journal of Dairy Science, 2004, 87(5): 1457-1468. DOI: 10.3168/jds.S0022-0302(04)73297-X.
doi: 10.3168/jds.S0022-0302(04)73297-X pmid: 15290995 |
[29] |
PEREZ-CABAL M A, GARCIA C, GONZALEZ-RECIO O. Genetic and phenotypic relationships among locomotion type traits, profit, production, longevity, and fertility in Spanish dairy cows. Journal of Dairy Science, 2006, 89(5): 1776-1783. DOI: 10.3168/jds.S0022-0302 (06)72246-9.
doi: 10.3168/jds.S0022-0302(06)72246-9 pmid: 16606749 |
[30] |
HAILE-MARIAM M, BOWMAN P J, GODDARD M E. Genetic and environmental relationship among calving interval, survival, persistency of milk yield and somatic cell count in dairy cattle. Livestock Production Science, 2003, 80(3): 189-200. DOI: 10.1016/ S0301-6226(02)00188-4.
doi: 10.1016/S0301-6226(02)00188-4 |
[31] |
HOLTSMARK M, HERINGSTAD B, MADSEN P. Genetic relationship between culling, milk production, fertility, and health traits in Norwegian Red cows. Journal of Dairy Science, 2008, 91(10): 4006-4012. DOI: 10.3168/jds.2007-0816.
doi: 10.3168/jds.2007-0816 pmid: 18832226 |
[32] |
PFEIFFER C, FUERST C, DUCROCQ V. Short communication: Genetic relationships between functional longevity and direct health traits in Austrian Fleckvieh cattle. Journal of Dairy Science, 2015, 98(10): 7380-7383. DOI: 10.3168/jds.2015-9632.
doi: 10.3168/jds.2015-9632 pmid: 26277309 |
[33] |
ROGERS G W, BANOS G, NIELSEN U S. Genetic correlations among somatic cell scores, productive life, and type traits from the United States and udder health measures from Denmark and Sweden. Journal of Dairy Science, 1998, 81(5): 1445-1453. DOI: 10.3168/ jds.S0022-0302(98)75708-X.
doi: 10.3168/jds.s0022-0302(98)75708-x pmid: 9621248 |
[34] |
NEERHOF H J, MADSEN P, DUCROCQ V P. Relationships between mastitis and functional longevity in Danish Black and White dairy cattle estimated using survival analysis. Journal of Dairy Science, 2000, 83(5): 1064-1071. DOI: 10.3168/jds.S0022-0302(00) 74970-8.
doi: 10.3168/jds.S0022-0302(00)74970-8 pmid: 10821581 |
[35] |
BUENGER A, DUCROCQ V, SWALVE H H. Analysis of survival in dairy cows with supplementary data on type scores and housing systems from a region of northwest Germany. Journal of Dairy Science, 2001, 84(6): 1531-1541. DOI: 10.3168/jds.S0022-0302(01) 70187-7.
doi: 10.3168/jds.S0022-0302(01)70187-7 pmid: 11417714 |
[36] |
LARROQUE H, DUCROCQ V. Relationships between type and longevity in the Holstein breed. Genetics Selection Evolution, 2001, 33(1): 39-59. DOI: 10.1186/1297-9686-33-1-39.
doi: 10.1186/1297-9686-33-1-39 |
[37] |
SEWALEM A, KISTEMAKER G J, MIGLIOR F. Analysis of the relationship between type traits and functional survival in Canadian Holsteins using a Weibull proportional hazards model. Journal of Dairy Science, 2004, 87(11): 3938-3946. DOI: 10.3168/jds.S0022- 0302(04)73533-X.
doi: 10.3168/jds.S0022-0302(04)73533-X pmid: 15483178 |
[38] |
DADPASAND M, MIRAEI-ASHTIANI S R, MORADI SHAHREBABAK M. Impact of conformation traits on functional longevity of Holstein cattle of Iran assessed by a Weibull proportional hazards model. Livestock Science, 2008, 118(3): 204-211. DOI: 10.1016/j.livsci.2008. 01.024.
doi: 10.1016/j.livsci.2008.01.024 |
[39] |
SEWALEM A, KISTEMAKER G J, VAN DOORMAAL B J. Relationship between type traits and longevity in Canadian Jerseys and Ayrshires using a Weibull proportional hazards model. Journal of Dairy Science, 2005, 88(4): 1552-1560. DOI: 10.3168/jds.S0022- 0302(05)72824-1
doi: 10.3168/jds.S0022-0302(05)72824-1 pmid: 15778325 |
[40] |
SEWALEM A, MIGLIOR F, KISTEMAKER G J. Relationship between reproduction traits and functional longevity in Canadian dairy cattle. Journal of Dairy Science, 2008, 91(4): 1660-1668. DOI: 10.3168/jds.2007-0178.
doi: 10.3168/jds.2007-0178 pmid: 18349259 |
[41] |
SEWALEM A, MIGLIOR F, KISTEMAKER G J. Analysis of the relationship between somatic cell score and functional longevity in Canadian dairy cattle. Journal of Dairy Science, 2006, 89(9): 3609-3614. DOI: 10.3168/jds.S0022-0302(06)72400-6.
doi: 10.3168/jds.S0022-0302(06)72400-6 pmid: 16899696 |
[42] |
CARAVIELLO D Z, WEIGEL K A, Shook G E. Assessment of the impact of somatic cell count on functional longevity in Holstein and Jersey cattle using survival analysis methodology. Journal of Dairy Science, 2005, 88(2): 804-811. DOI: 10.3168/jds.S0022-0302(05) 72745-4.
doi: 10.3168/jds.S0022-0302(05)72745-4 pmid: 15653548 |
[43] |
SEWALEM A, MIGLIOR F, KISTEMAKER G J. Analysis of the relationship between workability traits and functional longevity in Canadian dairy breeds. Journal of Dairy Science, 2010, 93(9): 4359-4365. DOI: 10.3168/jds.2009-2969.
doi: 10.3168/jds.2009-2969 pmid: 20723709 |
[44] |
FUERST-WALTL B, REICHL A, FUERST C. Effect of maternal age on milk production traits, fertility, and longevity in cattle. Journal of Dairy Science, 2004, 87(7): 2293-2298. DOI: 10.3168/jds.S0022- 0302(04)70050-8.
doi: 10.3168/jds.S0022-0302(04)70050-8 pmid: 15328244 |
[45] |
MIGLIOR F, SEWALEM A, JAMROZIK J. Analysis of milk urea nitrogen and lactose and their effect on longevity in Canadian dairy cattle. Journal of Dairy Science, 2006, 89(12): 4886-4894. DOI: 10.3168/jds.S0022-0302(06)72537-1.
doi: 10.3168/jds.S0022-0302(06)72537-1 pmid: 17106119 |
[46] |
SEWALEM A, KISTEMAKER G J, MIGLIOR F. Analysis of inbreeding and its relationship with functional longevity in Canadian dairy cattle. Journal of Dairy Science, 2006, 89(6): 2210-2216. DOI: 10.3168/jds.S0022-0302(06)72291-3.
doi: 10.3168/jds.S0022-0302(06)72291-3 pmid: 16702287 |
[47] |
FONTANESI L, CALO D G, GALIMBERTI G. A candidate gene association study for nine economically important traits in Italian Holstein cattle. Animal Genetics, 2014, 45(4): 576-580. DOI: 10.1111/ age.12164.
doi: 10.1111/age.12164 pmid: 24796806 |
[48] |
SZYDA J, MOREK-KOPEC M, KOMISAREK J. Evaluating markers in selected genes for association with functional longevity of dairy cattle. BMC genetics, 2011, 12: 30. DOI: 10.1186/1471-2156-12-30.
doi: 10.1186/1471-2156-12-30 pmid: 21392379 |
[49] |
KOMISAREK J, DORYNEK Z. Effect of ABCG2, PPARGC1A, OLR1 and SCD1 gene polymorphism on estimated breeding values for functional and production traits in Polish Holstein-Friesian bulls. Journal of Applied Genetics, 2009, 50(2): 125-132. DOI: 10.1007/ BF03195663.
doi: 10.1007/BF03195663 pmid: 19433909 |
[50] |
KHATIB H, SCHUTZKUS V, CHANG Y M. Pattern of expression of the uterine milk protein gene and its association with productive life in dairy cattle. Journal of Dairy Science, 2007, 90(5): 2427-2433. DOI: 10.3168/jds.2006-722.
doi: 10.3168/jds.2006-722 pmid: 17430947 |
[51] |
GARCIA M D, MICHAL J J, GASKINS C T. Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Animal Genetics, 2006, 37(3): 304-305. DOI: 10.1111/j.1365-2052. 2006.01443.x.
doi: 10.1111/j.1365-2052.2006.01443.x pmid: 16734705 |
[52] |
KHATIB H, HEIFETZ E, DEKKERS J C. Association of the protease inhibitor gene with production traits in Holstein dairy cattle. Journal of Dairy Science, 2005, 88(3): 1208-1213. DOI: 10.3168/jds.S0022- 0302(05)72787-9.
doi: 10.3168/jds.S0022-0302(05)72787-9 pmid: 15738254 |
[53] |
RUSSO V, FONTANESI L, DOLEZAL M, DOLEZAL M, LIPKIN E, SCOTTI E, ZAMBONELLI P, DALL’OLIO S, BIGI D, DAVOLI R, CANAVESI F, MEDUGORAC I, FOSTER M, SOLKNER J, SCHIAVINI F, BAGNATO A, SOLLER M . A whole genome scan for QTL affecting milk protein percentage in Italian Holstein cattle, applying selective milk DNA pooling and multiple marker mapping in a daughter design. Animal Genetics, 2012, 43(1): 72. DOI: 10.1111/ j.1365-2052.2012.02353.x.
doi: 10.1111/j.1365-2052.2011.02208.x pmid: 22221027 |
[54] |
HILL R, CANAL A, BONDIOLI K, MORELL R, GARCIA M D. Molecular markers located on the DGAT1, CAST, and LEPR genes and their associations with milk production and fertility traits in Holstein cattle. Genetics and Molecular Research, 2016, 15(1). DOI: 10.4238/gmr.15017794.
doi: 10.4238/gmr.15017198 pmid: 27051021 |
[55] |
GAUTIER M, CAPITAN A, FRITZ S, EGGEN A, BOICHARD D, DRUET T. Characterization of the DGAT1 K232A and variable number of tandem repeat polymorphisms in French dairy cattle. Journal of Dairy Science, 2007, 90(6): 2980-2988. DOI: 10.3168/jds. 2006-707.
doi: 10.3168/jds.2006-707 pmid: 17517739 |
[56] |
HUANG W, PENAGARICANO F, AHMAD K R, LUCEY J A, WEIGEL K A, KHATIB H. Association between milk protein gene variants and protein composition traits in dairy cattle. Journal of Dairy Science, 2012, 95(1): 440-449. DOI: 10.3168/jds.2011-4757.
doi: 10.3168/jds.2011-4757 pmid: 22192223 |
[57] |
CHEBEL R C, SUSCA F, SANTOS J E P. Leptin genotype is associated with lactation performance and health of Holstein cows. Journal of Dairy Science, 2008, 91(7): 2893-2900. DOI: 10.3168/ jds.2007-0891.
doi: 10.3168/jds.2007-0891 pmid: 18565947 |
[58] |
BRICKELL J S, POLLOTT G E, CLEMPSON A M, OTTER N, WATHES D C. Polymorphisms in the bovine leptin gene associated with perinatal mortality in Holstein-Friesian heifers. Journal of Dairy Science, 2010, 93(1): 340-347. DOI: 10.3168/jds.2009-2457.
doi: 10.3168/jds.2009-2457 pmid: 20059932 |
[59] |
COLE J B, WIGGANS G R, MA L. Genome-wide association analysis of thirty one production, health, reproduction and body conformation traits in contemporary U.S. Holstein cows. BMC Genomics, 2011, 12(1): 408.
doi: 10.1186/1471-2164-12-408 |
[60] |
NAYERI S, SARGOLZAEI M, ABO-ISMAIL M K. Genome-wide association study for lactation persistency, female fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. Journal of Dairy Science, 2017, 100(2): 1246-1258. DOI: 10.3168/jds.2016- 11770.
doi: 10.3168/jds.2016-11770 pmid: 27889128 |
[61] |
STERI R, MOIOLI B, CATILLO G. Genome-wide association study for longevity in the Holstein cattle population. Animal, 2019, 13(7): 1350-1357. DOI: 10.1017/S1751731118003191.
doi: 10.1017/S1751731118003191 pmid: 30501681 |
[62] |
HAY E H, ROBERTS A. Genomic prediction and genome-wide association analysis of female longevity in a composite beef cattle breed. Journal of Animal Science, 2017, 95(4): 1467-1471. DOI: 10.2527/jas2016.1355.
pmid: 28464084 |
[63] |
SAOWAPHAK P, DUANGJINDA M, PLAENGKAEO S. Genetic correlation and genome-wide association study (GWAS) of the length of productive life, days open, and 305-days milk yield in crossbred Holstein dairy cattle. Genetics and Molecular Research, 2017, 16(2). DOI: 10.4238/gmr16029091.
doi: 10.4238/gmr16029696 pmid: 28653742 |
[64] |
ZHANG Q, GULDBRANDTSEN B, THOMASEN J R. Genome- wide association study for longevity with whole-genome sequencing in 3 cattle breeds. Journal of Dairy Science, 2016, 99(9): 7289-7298. DOI: 10.3168/jds.2015-10697.
doi: 10.3168/jds.2015-10697 pmid: 27289149 |
[65] |
MESZAROS G, EAGLEN S, WALDMANN P. A genome wide association study for longevity in cattle. Open Journal of Genetics, 2014, 4(1): 46-55. DOI: 10.4236/ojgen.2014.41007.
doi: 10.4236/ojgen.2014.41007 |
[66] |
MIGLIOR F, FLEMING A, MALCHIODI F. A 100-year review: identification and genetic selection of economically important traits in dairy cattle. Journal of Dairy Science, 2017, 100(12): 10251-10271. DOI: 10.3168/jds.2017-12968.
doi: 10.3168/jds.2017-12968 pmid: 29153164 |
[67] |
VUKASINOVIC N, SCHLEPPI Y, KUNZI N. Using conformation traits to improve reliability of genetic evaluation for herd life based on survival analysis. Journal of Dairy Science, 2002, 85(6): 1556-1562. DOI: 10.3168/jds.S0022-0302(02)74225-2.
doi: 10.3168/jds.S0022-0302(02)74225-2 pmid: 12146488 |
[68] |
SEWALEM A, MIGLIOR F, KISTEMAKER G J. Short communication: Modification of genetic evaluation of herd life from a three-trait to a five-trait model in Canadian dairy cattle. Journal of Dairy Science, 2007, 90(4): 2025-2028. DOI: 10.3168/jds.2006-719.
doi: 10.3168/jds.2006-719 pmid: 17369244 |
[69] |
VANRADEN P M. Efficient methods to compute genomic predictions. Journal of Dairy Science, 2008, 91(11): 4414-4423. DOI: 10.3168/ jds.2007-0980.
doi: 10.3168/jds.2007-0980 pmid: 18946147 |
[70] |
LIU Z, SEEFRIED F R, REINHARDT F. Impacts of both reference population size and inclusion of a residual polygenic effect on the accuracy of genomic prediction. Genetics Selection Evolution, 2011, 43: 19. DOI: 10.1186/1297-9686-43-19.
doi: 10.1186/1297-9686-43-19 |
[71] |
VANRADEN P M, VAN TASSELL C P, WIGGANS G R. Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 2009, 92(1): 16-24. DOI: 10.3168/jds.2008-1514.
doi: 10.3168/jds.2008-1514 pmid: 19109259 |
[72] | 鄢新义, 刘澳星, 董刚辉, 郭刚, 王新宇, 刘林, 张胜利, 王雅春. 北京地区中国荷斯坦牛长寿性及其影响因素分析. 中国畜牧杂志, 2016, 52(23): 1-6. |
YAN X Y, LIU A X, DONG G H, GUO G, WANG X Y, LIU L, ZHANG S L, WANG Y C. Analysis of longevity and its influencing factors in Chinese Holstein population in Beijing. Chinese Journal of Animal Science. 2016, 52(23): 1-6.(in Chinese) | |
[73] | 毛杰. 上海地区荷斯坦牛体型性状与产奶性状、SCS和寿命性状的遗传分析[D]. 南京: 南京农业大学, 2015. |
MAO J. Genetic analysis between type traits, milk production traits, SCS and longevity traits of Holstein cattle in Shanghai[D]. Nanjing: Nanjing Agricultural University, 2015.(in Chinese) | |
[74] |
储明星, 叶素成, 陈国宏. 微卫星标记与奶牛数量性状QTL定位. 遗传, 2003(3): 337-340.
doi: 10.1111/j.1601-5223.1999.00337.x pmid: 10509144 |
CHU M X, YE S C, CHEN G H. Mapping quantitative trait loci for quantitative traits in dairy cattle microsatellite markers. Hereditas. 2003(3): 337-340.(in Chinese)
doi: 10.1111/j.1601-5223.1999.00337.x pmid: 10509144 |
|
[75] |
王梦琦, 倪炜, 张慧敏, 杨章平, 王西朴, 蒋彦森, 毛永江. 中国荷斯坦牛CXCR1基因编码区SNP多态与临床乳房炎和生产寿命的关联分析. 中国农业科学, 2017, 50(12): 2359-2370. DOI: 10.3864/j.issn.0578-1752.2017.12.016.
doi: 10.3864/j.issn.0578-1752.2017.12.016 |
WANG M Q, NI W, ZHANG H M, YANG Z P, WANG X P, JIANG Y S, MAO Y J. Association between SNPs in the CDS regions of CXCR1 gene and the clinical mastitis and lifetime for Chinese Holstein. Scientia Agricultura Sinica, 2017, 50(12): 2359-2370. DOI: 10.3864/j.issn.0578-1752.2017.12.016. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.12.016 |
|
[76] | 王梦琦, 倪炜, 郭译蔚, 张慧敏, 杨章平, 毛永江. 中国荷斯坦牛SLC35A3-66基因SNP突变与奶牛疾病及泌乳性能的相关性分析. 中国兽医学报, 2017, 37(12): 2418-2424. DOI: 10.16303/j.cnki.1005- 4545.2017.12.30. |
WANG M Q, NI W, GUO Y W, ZHANG H M, YANG Z P, MAO Y J. Correlation analysis between diseases and milking traits and SNP of SLC35A3-66 for Chinese Holstein cow. Chinese Journal of Veterinary Science, 2017, 37(12): 2418-2424. DOI: 10.16303/j.cnki.1005-4545. 2017.12.30. (in Chinese) | |
[77] | 赵佳强. 中国荷斯坦奶牛生产寿命、体型线性性状分子标记的研究[D]. 武汉: 华中农业大学, 2013. |
ZHAO J Q. Research on molecular markers and productive life, liner type traits of Holstein cattle in China[D]. Wuhan: Huazhong Agricultural University, 2013.(in Chinese) | |
[78] | 陈星. 奶牛乳房炎相关天然免疫基因的筛选及其功能研究[D]. 武汉: 华中农业大学, 2016. |
CHEN X. Dairy cow mastitis related innate immune genes screening and function study[D]. Wuhan: Huazhong Agricultural University, 2016.(in Chinese) | |
[79] |
LIU A, LUND M S, BOICHARDARD D, KARAMAN E, FRITZ S, AAMAND G P, NIELSEN U S, WANG Y, SU G. Improvement of genomic prediction by integrating additional single nucleotide polymorphisms selected from imputed whole genome sequencing data. Heredity, 2020, 124: 37-49. DOI: 10.1038/s41437-019-0246-7.
doi: 10.1038/s41437-019-0246-7 pmid: 31278370 |
[80] |
BRONDUM R F, SU G, JANSS L, SAHANA G, GULDBRANDTSEN B, BOICHARD D, Lund M S. Quantitative trait loci markers derived from whole genome sequence data increases the reliability of genomic prediction. Journal of Dairy Science, 2015, 98(6): 4107-4116. DOI: 10.3168/jds.2014-9005.
doi: 10.3168/jds.2014-9005 pmid: 25892697 |
[1] | 唐玉林, 张博, 任曼, 张瑞雪, 秦俊杰, 朱浩, 郭延生. UPLC-MS/MS代谢组学评价归芪益母口服液对产后奶牛瘤胃的调节作用[J]. 中国农业科学, 2023, 56(2): 368-378. |
[2] | 任义方,杨章平,零丰华,肖良文. 江苏奶牛热应激风险区划及其受气候变化的影响[J]. 中国农业科学, 2022, 55(22): 4513-4525. |
[3] | 董明明,赵番番,葛建军,赵俊亮,王丹,胥磊,张梦华,种丽伟,黄锡霞,王雅春. 新疆地区荷斯坦牛长寿性与产奶量的遗传力估计及相关性分析[J]. 中国农业科学, 2022, 55(21): 4294-4303. |
[4] | 姜春晖,孙旭东,唐燕,罗胜缤,徐闯,陈媛媛. 姜黄素通过Nrf2信号通路对H2O2诱导奶牛乳腺上皮细胞氧化应激的缓解[J]. 中国农业科学, 2021, 54(8): 1787-1794. |
[5] | 陈志,张逸,路钦越,郭佳禾,梁艳,张明怡星,杨章平. 茶树油对LPS诱导的奶牛乳腺炎的作用及其机制[J]. 中国农业科学, 2021, 54(14): 3124-3133. |
[6] | 杨云燕,王其炎,彭地纬,潘一帆,高晓梅,宣泽义,陈少梅,邹彩霞,曹艳红,林波. 日粮添加肉桂醛对奶牛公犊生长、健康及瘤胃发酵性能的影响[J]. 中国农业科学, 2021, 54(10): 2229-2238. |
[7] | 李会霞,田岗,王玉文,刘鑫,刘红. 谷子杂交种与亲本性状的遗传相关性[J]. 中国农业科学, 2020, 53(2): 239-246. |
[8] | 党李苹,周雯馨,刘瑞芳,白云,王哲鹏. 略阳乌鸡体重和产蛋数性状遗传参数估计[J]. 中国农业科学, 2020, 53(17): 3620-3628. |
[9] | 李广栋,吕东颖,田秀芝,姬鹏云,郭江鹏,路永强,刘国世. 组学技术在奶牛乳房炎上应用的相关研究进展[J]. 中国农业科学, 2019, 52(2): 350-358. |
[10] | 闫超群,李帅鹏,张申,谢顺,魏开赟,黄显会. 头孢洛宁乳房注入剂(干乳期)在牛奶中的残留消除[J]. 中国农业科学, 2019, 52(2): 367-375. |
[11] | 王丽芳,张兴夫. 黄花蒿醇提物对奶牛乳腺细胞中共轭亚油酸 合成相关酶基因表达的作用[J]. 中国农业科学, 2019, 52(18): 3271-3278. |
[12] | 毕崇亮,刘俊俊,王亨,王娟,韩照清,关立增. 硒对S. aureus诱导的奶牛乳腺上皮细胞Nod2/MAPK/mTORs信号通路关键蛋白表达的影响[J]. 中国农业科学, 2019, 52(16): 2891-2898. |
[13] | 王丽芳,斯琴毕力格,敖长金. 黄花蒿提取物对奶牛瘤胃发酵指标的影响[J]. 中国农业科学, 2018, 51(23): 4548-4555. |
[14] | 韩佳良,刘建新,刘红云. 热应激对奶牛泌乳性能的影响及其机制[J]. 中国农业科学, 2018, 51(16): 3162-3170. |
[15] | 徐丹丹,王建发,张旭,刘东宇,许小楠,王乐,陈嘉,单旭菲,王晓雅,武瑞,杨彬. 胞壁酰二肽对体外奶牛乳腺上皮细胞生长及胞内NOD2 mRNA表达的影响[J]. 中国农业科学, 2017, 50(3): 574-581. |
|