中国农业科学 ›› 2020, Vol. 53 ›› Issue (10): 2078-2090.doi: 10.3864/j.issn.0578-1752.2020.10.014
邓媛元,杨婧,魏振承,张雁,刘光,张瑞芬,唐小俊,王佳佳,廖娜,张名位()
收稿日期:
2019-09-20
接受日期:
2019-12-26
出版日期:
2020-05-16
发布日期:
2020-05-22
通讯作者:
张名位
作者简介:
邓媛元,Tel:020-87032667;E-mail:yuanyuan_deng@yeah.net。
基金资助:
DENG YuanYuan,YANG Jing,WEI ZhenCheng,ZHANG Yan,LIU Guang,ZHANG RuiFen,TANG XiaoJun,WANG JiaJia,LIAO Na,ZHANG MingWei()
Received:
2019-09-20
Accepted:
2019-12-26
Online:
2020-05-16
Published:
2020-05-22
Contact:
MingWei ZHANG
摘要:
【目的】 研究热风-真空冷冻联合干燥对脆性龙眼果干品质及益生活性的影响,为高品质龙眼果干工业化节能干燥模式提供理论依据。【方法】 以热风干燥、真空冷冻干燥龙眼果干为对照,比较分析热风-真空冷冻联合干燥对脆性龙眼果干水分含量、水分活度、皱缩率、复水比等理化特性和总糖、多糖等营养品质的影响。同时采用GC-MS测定风味物质变化,电量表测定能源消耗量。并选用植物乳杆菌和嗜酸乳杆菌发酵龙眼果干,比较发酵过程中活菌数、总糖、还原糖以及短链脂肪酸的变化,评价热风-真空冷冻联合干燥对龙眼体外益生活性的影响。【结果】 热风-真空冷冻联合干燥龙眼果干的水分含量、水分活度和皱缩率显著低于热风干燥,而复水比显著高于热风干燥。在总糖、多糖含量以及挥发性风味物质种类和总量上,热风-真空冷冻联合干燥低于真空冷冻干燥而高于热风干燥。在能源消耗上,热风-真空冷冻联合干燥比真空冷冻干燥节约干燥时间12.16%,节约单位能耗25.40%。在益生活性方面,植物乳杆菌和嗜酸乳杆菌均能通过发酵龙眼干增加活菌数量,利用龙眼干中的总糖产生短链脂肪酸,降低发酵液pH,且益生效果受干燥方式和菌株种类的影响较大。当植物乳杆菌发酵热风-真空冷冻干燥的龙眼果干48 h后,活菌数生长最多可达12.40 lg cfu/mL,高于真空冷冻干燥、热风干燥和新鲜龙眼。嗜酸乳杆菌发酵48 h后,热风-真空冷冻联合干燥活菌数达11.84 lg cfu/mL,与真空冷冻干燥接近,低于热风干燥,但高于新鲜龙眼。【结论】 热风-真空冷冻联合干燥结合了热风干燥和真空冷冻干燥两种干燥方式的特点,可以显著缩短干燥时间,节约能耗,提高干燥效率和果干品质。
邓媛元,杨婧,魏振承,张雁,刘光,张瑞芬,唐小俊,王佳佳,廖娜,张名位. 热风-真空冷冻联合干燥对脆性龙眼果干品质及益生活性的影响[J]. 中国农业科学, 2020, 53(10): 2078-2090.
DENG YuanYuan,YANG Jing,WEI ZhenCheng,ZHANG Yan,LIU Guang,ZHANG RuiFen,TANG XiaoJun,WANG JiaJia,LIAO Na,ZHANG MingWei. Effects of Hot Air-Vacuum Freeze Combined with Drying on Physical Properties and Prebiotic Activities of Brittle Dried Longan[J]. Scientia Agricultura Sinica, 2020, 53(10): 2078-2090.
表1
热风-真空冷冻联合干燥对龙眼果干水分含量、水分活度和皱缩率的影响"
干燥方式 Drying method | 水分含量 Water content (%) | 水分活度 Water activity | 皱缩率 Shrinkage rate (%) |
---|---|---|---|
热风干燥Got air drying | 14.53±0.59b | 0.63±0.01b | 76.43±2.13c |
真空冷冻干燥Vacuum freeze drying | 7.46±0.31a | 0.41±0.01a | 39.21±1.68a |
热风-真空冷冻联合干燥 Hot air-vacuum freeze combined drying | 8.02±0.01a | 0.42±0.00a | 47.25±1.28b |
表2
热风-真空冷冻联合干燥对龙眼果干挥发性风味物质的影响"
挥发性物质 Volatile flavor substances | 热风干燥 Hot air drying | 真空冷冻干燥 Vacuum freeze drying | 热风-真空冷冻联合干燥 Hot air-vacuum freeze combined with drying |
---|---|---|---|
烷烃类Alkane | |||
三氯甲烷Trichloromethane | — | 0.75±0.09 | 0.25±0.04 |
十一烷Undecane | 0.16±0.01 | — | 0.08±0.01 |
十二烷Dodecane | 0.08±0.01 | 0.52±0.02 | 0.19±0.13 |
十三烷Tridecane | — | 0.41±0.11 | 0.20±0.02 |
十四烷Tetradecane | 0.06±0.01 | 0.45±0.00 | 0.21±0.02 |
八甲基环四硅氧烷Octamethyl cyclotetrasiloxane | — | 0.18±0.11 | — |
十甲基环五硅氧烷Decamethyl cyclopentasiloxane | 0.44±0.23 | 1.30±0.30 | 0.99±0.04 |
十二甲基环六硅氧烷Dodecymethyl cyclohexasiloxane | 1.05±0.11 | 1.65±0.11 | 1.03±0.08 |
十四甲基环七硅氧烷Tetradecyclic heptasiloxane | 0.69±0.11 | 0.86±0.06 | 0.54±0.01 |
十六烷基环八硅氧烷Hexadecyl cycloocsiloxane | 0.09±0.11 | 0.09±0.01 | 0.13±0.01 |
正十九烷Nonadecane | 0.08±0.01 | — | — |
十八甲基环九硅氧烷Octadecymethyl cyclodoxy siloxane | — | 0.21±0.02 | — |
烷烃类总量Total alkane | 2.65±0.12 | 6.42±0.37 | 3.61±0.25 |
烯烃类Olefin | |||
罗勒烯异构体混合物Mixture of basil isomers | 0.10±0.26 | 15.89±0.86 | 20.07±4.62 |
(E)-B-罗勒烯(E)-B-ocimene | — | 0.36±0.04 | 0.60±0.11 |
别罗勒烯Alloocimene | — | — | 0.71±0.19 |
反式石竹烯Trans carnation | — | 0.13±0.00 | 0.10±0.03 |
古巴烯Cuba ene | 0.14±0.02 | — | |
2,6-二甲基-1,3,5,7-辛四烯2,6-dimethyl-1,3,5,7-octatetracene | — | — | 0.13±001 |
α–法呢烯α–farnesene | 0.16±0.02 | 0.19±0.02 | |
(6E)-7,11-二甲基-3-亚甲基-1,6,10-十二碳三烯 (6E)-7,11-dimethyl-3-methylene-1,6,10-dodecatriene | — | 0.28±0.02 | 0.55±0.07 |
2,6二乙基吡嗪 2,6-diethylpyrazine | — | 0.55±0.05 | — |
2,6-二甲基-6-(4-甲基-3-戊基)双环[3.1.1]七碳-2-烯 2,6-dimethyl-6- (4-methyl-3-pentenyl)-bicyclo [3.1.1]hept-2-ene | — | — | 0.11±0.03 |
3,7,11-三甲基-1,3,6,10-十二碳-四烯(E,E)-α-farnesene | — | — | 0.16±0.11 |
烯烃类总量Total olefin | 0.10±0.26 | 17.50±0.87 | 22.62±4.96 |
醇类Alcohol | |||
(2R,3R)-(-)-2,3-丁二醇(R,R)-2,3-butanediol | 0.39±0.07 | — | 0.14±0.02 |
2,3-丁二醇2,3-butanediol | 0.72±0.24 | 0.92±0.05 | 0.14±0.01 |
环己醇Cyclohexanol | 0.07±0.01 | — | — |
芳樟醇Linalool | — | 2.03±0.34 | — |
苯乙醇Phenethyl alcohol | — | 0.37±0.04 | — |
醇类总量Total alcohol | 1.19±0.32 | 3.32±0.03 | 0.13±0.18 |
酯类Ester | |||
水杨酸甲酯Methyl salicylate | 0.12±0.01 | 1.53±0.09 | — |
软脂酸乙酯Ethyl palmitate | 0.07±0.00 | 1.05±0.03 | 0.07±0.02 |
月桂酸乙酯Ethyl laurate | — | 2.45±0.07 | 0.04±0.01 |
烟酸甲酯Methyl nicotinate | — | 1.13±0.06 | — |
苯甲酸乙酯Ethyl benzoate | — | 0.53±0.12 | — |
烟酸乙酯Nicotinic acid ethyl ester | — | 0.28±0.13 | — |
乙酸乙酯Ethyl acetate | — | 0.12±0.01 | — |
(Z)-3,7-二甲基-2,6-辛二烯酸甲酯 2,6-octadienoic acid,3,7-dimethyl-, methyl ester | — | 0.20±0.17 | — |
癸酸乙酯Ethyl caprate | — | 0.66±0.06 | — |
月桂酸甲酯Methyl laurate | — | 0.32±0.05 | — |
十四酸乙酯Ethyl myristate | — | 0.76±0.11 | — |
14-甲基十五烷酸甲酯Methyl 14-methylpentadecanoate | — | 0.18±0.03 | — |
油酸乙酯Ethyl oleate | — | 0.10±0.01 | — |
酯类总量Total ester | 0.19±0.01 | 9.30±0.24 | 0.11±0.01 |
醛类Aldehyde | |||
壬醛Nonanal | 0.12±0.03 | 0.52±0.13 | 0.09±0.02 |
癸醛Capraldehyde | 0.07±0.01 | — | — |
醛类总量Total aldehyde | 0.20±0.14 | 0.52±0.13 | 0.09±0.02 |
酸类Acid | |||
壬酸N-nonanoic acid | 0.07±0.00 | — | — |
酸类总量Total acids | 0.07±0.00 | — | — |
表3
热风-真空冷冻联合干燥龙眼中总糖及多糖含量"
干燥方式Drying method | 总糖Total sugar (mg?g-1 DW) | 多糖Polysaccharide (mg?g-1 DW) |
---|---|---|
新鲜龙眼Fresh logan | 1.72±0.15a | 1.55±0.15a |
热风干燥Hot air drying | 1.86±0.09a | 1.52±0.09a |
真空冷冻干燥Vacuum freeze drying | 3.15±0.17c | 2.76±0.18c |
热风-真空冷冻联合干燥Hot air-vacuum freeze combined drying | 2.23±0.12b | 1.96±0.13b |
表4
热风-真空冷冻联合干燥对龙眼果干单位能耗和干燥时间的影响"
干燥方式 Drying method | 干燥2.4 kg龙眼时间Drying time of 2.4 kg longan (h) | 单位能耗Unit energy consumption (mj?kg-1) | ||||
---|---|---|---|---|---|---|
热风干燥阶段Hot air drying period | 真空冷冻阶段Vacuum freeze drying period | 总耗时 Total time | 热风干燥阶段Hot air drying period | 真空冷冻阶段Vacuum freeze drying period | 总单位能耗、Total unit energy consumption | |
热风干燥Hot air drying | 20.00 | — | 20.00 | 7.90 | — | 7.90 |
真空冷冻干燥Vacuum freeze drying | — | 74.00 | 74.00 | — | 108.09 | 108.09 |
热风-真空冷冻联合干燥 Hot air-vacuum freeze combined with drying | 3.00 | 62.00 | 65.00 | 4.68 | 75.96 | 80.64 |
表5
热风-真空冷冻干燥的龙眼果干经植物乳杆菌发酵48 h后短链脂肪酸含量变化"
干燥方式 Drying method | 乙酸 Acetic acid | 丙酸 Propionic acid | 异丁酸 Isobutyric acid | 正丁酸 N-butyric acid | 异戊酸 Isovaleric acid | 正戊酸 Pentanoic acid |
---|---|---|---|---|---|---|
新鲜龙眼Fresh logan | 125.92±4.38a | 2.68±0.19a | 0.68±0.03ab | 2.65±0.09a | 4.80±2.51a | 0.28±0.03a |
热风干燥Hot air drying | 163.34±7.82c | 5.61±1.02b | 0.78±0.16b | 6.26±0.41c | 6.98±0.57ab | 0.42±0.02b |
真空冷冻干燥Vacuum freeze drying | 157.89±2.32bc | 4.65±0.52b | 0.53±0.03a | 4.38±0.66b | 12.14±0.98b | 0.41±0.01ab |
热风-真空冷冻联合干燥 Hot air-vacuum freeze combined drying | 148.92±4.63b | 5.90±0.75b | 0.84±0.07b | 3.26±0.24a | 8.65±4.66ab | 0.42±0.12b |
表6
热风-真空冷冻干燥的龙眼果干经嗜酸乳杆菌发酵48 h后短链脂肪酸含量变化"
干燥方式 Drying method | 乙酸 Acetic acid | 丙酸 Propionic acid | 异丁酸 Isobutyric acid | 正丁酸 N-butyric acid | 异戊酸 Isovaleric acid | 正戊酸 Pentanoic acid |
---|---|---|---|---|---|---|
新鲜龙眼Fresh logan | 138.18±31.16a | 4.41±0.75a | 0.74±0.33a | 3.38±1.48ab | 8.02±0.06ab | 0.42±0.04a |
热风干燥Hot air drying | 179.08±14.05a | 5.47±0.33a | 0.85±0.03a | 4.64±0.43b | 7.60±0.26a | 0.60±0.03a |
真空冷冻干燥Vacuum freeze drying | 145.61±24.34a | 5.47±0.68a | 1.41±0.07a | 3.37±0.26ab | 7.19±0.24a | 0.49±0.09a |
热风-真空冷冻联合干燥 Hot air-vacuum freeze combined drying | 177.03±27.10a | 11.35±2.12b | 1.80±0.34b | 2.95±0.39a | 9.27±1.31b | 0.68±0.38a |
[1] | WU Y L, YI G J, ZHOU B R, ZENG J W, HUANG Y H . The advancement of research on litchi and longan germplasm resources in China. Scientia Horticulturae, 2007,114(3):143-150. |
[2] | 齐文娥, 陈厚彬, 彭朵芬, 晏发发 . 中国龙眼产业发展现状、问题与对策建议. 广东农业科学, 2016,43(8):169-174. |
QI W E, CHEN H B, PENG D F, YAN F F . Present situation, problems and suggestions of the development of Chinese longan industry. Guangdong Agricultural Sciences, 2016,43(8):169-174. (in Chinese) | |
[3] | 白亚娟, 刘磊, 张瑞芬, 邓媛元, 黄菲, 张名位 . 龙眼果肉提取物改善东莨菪碱诱导小鼠学习记忆功能. 中国农业科学, 2016,49(21):4203-4213. |
BAI Y J, LIU L, ZHANG R F, DENG Y Y, HUANG F, ZHANG M W . Longan pulp extracts ameliorate scopolamine-induced learning and memory of impairment mice. Scientia Agricultura Sinica, 2016,49(21):4203-4213. (in Chinese) | |
[4] | RONG Y, YANG R L, YANG Y Z, WEN Y Z, LIU S X, LI C F, HU Z Y, CHENG X R, LI W . Structural characterization of an active polysaccharide of longan and evaluation of immunological activity. Carbohydrate Polymers, 2019,213:247-256. |
[5] | YANG K M, CHIANG P Y . Effects of smoking process on the aroma characteristics and sensory qualities of dried longan. Food Chemistry, 2019,287:133-138. |
[6] |
APINYAVISIT K, NATHAKARANAKULE A, MITTAL G S, SOPONRONNARIT S . Heat and mass transfer properties of longan shrinking from a spherical to an irregular shape during drying. Biosystems Engineering, 2018,169:11-21.
doi: 10.1016/j.biosystemseng.2018.01.007 |
[7] | 陈彦林 . 不同干制方式龙眼果肉主要活性物质的比较[D]. 武汉: 华中农业大学, 2014. |
CHEN Y L . Comparison of different drying methods on main active substances in longan (Dimocarpus longan Lour.) pulp[D]. Wuhan: Huazhong Agricultural University, 2014. (in Chinese) | |
[8] | 苏东晓, 张名位, 廖森泰, 侯方丽, 张瑞芬, 唐小俊, 魏振承, 张雁, 池建伟, 邓媛元 . 龙眼果肉水溶性提取物对正常小鼠免疫调节作用的影响. 中国农业科学, 2010,43(9):1919-1925. |
SU D X, ZHANG M W, LIAO S T, HOU F L, ZHANG R F, TANG X J, WEI Z C, ZHANG Y, CHI J W, DENG Y Y . Effects of water soluble extracts from longan on immune regulation in normal mice. Scientia Agricultura Sinica, 2010,43(9):1919-1925. (in Chinese) | |
[9] | LI X, WANG L, WANG Y, XIONG Z H . Effect of drying method on physicochemical properties and antioxidant activities of Hohenbuehelia serotina polysaccharides. Process Biochemistry, 2016,51(8):1100-1108. |
[10] | 韩苗苗, 姚娟, 易阳, 黄菲, 王丽梅 . 龙眼果肉干燥过程中多糖的理化特征与活性变化规律. 食品科学, 2017,38(21):67-73. |
HAN M M, YAO J, YI Y, HUANG F, WANG L M . Changes of polysaccharides in longan pulp during drying: Physicochemical properties and biological activities. Food Science, 2017,38(21):67-73. (in Chinese) | |
[11] | YI Y, ZHANG M W, LIAO S T, ZHANG R F, DENG Y Y, WEI Z C, TANG X J, ZHANG Y . Structural features and immunomodulatory activities of polysaccharides of longan pulp. Carbohydrate Polymers, 2012,87(1):636-643. |
[12] | 王亚鸽, 支龙飞, 张益涵, 蒙源, 钟钦权, 杨志伟 . 龙眼真空冻干与热风干燥品质比较研究. 轻工科技, 2012,28(5):24-25. |
WANG Y G, ZHI L F, ZHANG Y H, MENG Y, ZHONG Q Q, YANG Z W . Comparative study on quality of longan vacuum freeze-drying and hot air-drying. Light Industry Science and Technology, 2012,28(5):24-25. (in Chinese) | |
[13] | CHUNTHAWORN S, ACHARIYAVIRIYA S, ACHARIYAVIRIYA A, NAMSANGUAN K . Color kinetics of longan flesh drying at high temperature. Procedia Engineering, 2012,32:104-111. |
[14] | NATHAKARANAKULE A, JAIBOON P, SOPONRONNARIT S . Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 2010, 100(4):662-668. |
[15] | 庄培荣 . 龙眼肉微波真空干燥技术的研究[D]. 福州: 福建农林大学, 2011. |
ZHUANG P R . Studies on the microwave vacuum drying of arillus longan[D]. Fuzhou: Fujian Agricultural and Forestry University, 2011. (in Chinese) | |
[16] | 田玉庭, 陈洁, 李淑婷, 庄培荣, 庄玮婧, 郑宝东 . 不同干燥方法对龙眼果肉品质特性的影响. 西北农林科技大学学报(自然科学版), 2012,40(8):161-165. |
TIAN Y T, CHEN J, LI S T, ZHUANG P R, ZHUANG W J, ZHENG B D . Effect of different drying methods on the quality of longan (Dimocarpus longan Lour.) pulp. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2012,40(8):161-165. (in Chinese) | |
[17] | RAJKUMAR G, SHANMUGAM S, GALVAO M D S, DUTRA-SANDES R D, LEITE-NETA M T S, NARAIN N, MUJUMDAR A S . Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT-Fodd Scienceand Technology, 2017,80:501-509. |
[18] | SZYCHOWSKI P J, LECH K, SENDRA-NADAL E, HEMNANDEZ F, FIGIEL A, WOJDYLO A, CARBONELL-BARRACHINA Á A . Biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method. Food Chemistry, 2018,255:157-164. |
[19] | WOJDYLO A, FIGIEL A, LEGUA P, LECH K, CARBONELL- BARRACHINA Á A, HEMNANDEZ F . Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method. Food Chemistry, 2016,207:170-179. |
[20] | NATHAKARANAKULE A, JAIBOON P, SOPONRONNARIT S . Far-infrared radiation assisted drying of longan fruit. Journal of Food Engineering, 2010,99(4):662-668. |
[21] | HUANG F, LIU H J, ZHANG R F, DONG L H, LIU L, MA Y X, JIA X C, WANG G J, ZHANG M W . Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques. Carbohydrate Polymers, 2019b,206:344-351. |
[22] |
KONG F L, ZHANG M W, KUANG R B, YU S J, CHI J W, WEI Z C . Antioxidant activities of different fractions of polysaccharide purified from pulp tissue of litchi ( Litchi chinensis Sonn.). Carbohydrate Polymers, 2010,81(3):612-616.
doi: 10.1016/j.carbpol.2010.03.021 |
[23] |
ZHANG Y, GAO B, ZHANG M W, SHI J, XU Y J . Headspace solid-phase microextraction-gas chromatography-mass spectrometry analysis of the volatile components of longan ( Dimocarpus longan Lour.). European Food Research and Technology, 2009,229(3):457-465.
doi: 10.1007/s00217-009-1076-2 |
[24] | 俞憬 . 龙眼果干乳酸菌发酵工艺优化及肠道菌群调节作用的研究[D]. 广州: 广东药科大学, 2018. |
YU J . Study on process optimization of longan pulps fermented by lactobacillus and regulation of intestinal flora[D]. Guangzhou: Guangdong Pharmaceutical University, 2018. (in Chinese) | |
[25] | WANG H, ZHANG M, MUJUMDAR A S . Comparison of three new drying methods for drying characteristics and quality of shiitake mushroom ( Lentinus edodes). Drying Technology, 2014,32(15):1791-1802. |
[26] | 张群, 刘伟, 袁洪燕 . 不同温度热风干燥对蓝莓果干品质的影响. 湖南农业科学, 2018(6):79-83. |
ZHANG Q, LIU W, YUAN H Y . Effects of hot-air-drying at different temperatures on blueberry quality. Hunan Agricultural Sciences, 2018(6):79-83. (in Chinese) | |
[27] | CHANG C Y, CHANG C H, YU T H . The effect of drying treatment on the flavor and quality of longan fruit. Development of Food Science, 1998,40:353-367. |
[28] | 胡文舜, 蒋际谋, 黄爱萍, 郑少泉 . ‘晚香’龙眼果实香气成分的3种萃取头GC-MS效果分析. 福建农业学报, 2015,30(12):1497-1154. |
HU W S, JIANG J M, HUANG A P, ZHENG S Q . GC-MS analysis on aromatics of ‘Wanxiang’ longans using different extraction fiber. Fujian Journal of Agricultural Sciences, 2015,30(12):1497-1154. (in Chinese) | |
[29] | 邓媛元, 张雁, 汤琴, 张瑞芬, 魏振承, 马永轩, 张名位, 张惠娜 . 干燥方式对苦瓜茶感官品质及挥发性物质的影响. 中国食品学报, 2019,19(2):173-184. |
DENG Y Y, ZHANG Y, TANG Q, ZHANG R F, WEI Z C, MA Y X, ZHANG M W, ZHANG H N . Effect of drying methods on the sensory characteristicsand volatile compounds of Momordica charantia tea. Journal of Chinese Institute of Food Science and Technology, 2019,19(2):173-184. (in Chinese) | |
[30] | RAJKUMAR G, SHANMUGAM S, GALVAO M D S, DUTRA-SANDES R D, LEITE-NETA M T S, NARAIN N, MUJUMDAR A S . Comparative evaluation of physical properties and volatiles profile of cabbages subjected to hot air and freeze drying. LWT-Fod Science and Technology, 2017,80:501-509. |
[31] | YANG B, PRASAD K N, XIE H H, LIN S, JIANG Y M . Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effect on lactic acid bacteria. Food Chemistry, 2011,126(2):590-594. |
[32] | AKBARI-ALAVIJEH S, SOLEIMANIAN-ZAD S, SHEIKH-ZEINODDIN M, HASHMI S . Pistachio hull water-soluble polysaccharides as a novel prebiotic agent. International Journal of Biological Macromolecules, 2018,107:808-816. |
[33] | HU J H, NIE S P, LI C, XIE M Y . In vitro fermentation of polysaccharide from the seeds of Plantago asiatica L. by human fecal microbiota. Food Hydrocolloid, 2013,33(2):384-392. |
[34] |
AHMADI S, SHEIKH-ZEINODDIN M, SOLEIMANIAN-ZAD S, ALIHOSSEINI F, YADAV H . Effects of different drying methods on the physicochemical properties and antioxidant activities of isolated acorn polysaccharides. LWT-Food Science and Technology, 2019,100:1-9.
doi: 10.1016/j.lwt.2018.10.027 |
[35] | LOVEGROVE A, EDWARDS C H, NONI I D, PATEL H, El S N, GRASSBY T . Role of polysaccharides in food, digestion and health. Critical Reviews in Food Science and Nutrition, 2017,57(2):237-253. |
[36] |
WANG X, HUANG M, YANG F, SUN H J, ZHOU X X, GUO Y, WANG X L, ZHANG M L . Rapeseed polysaccharides as prebiotics on growth and acidifying activity of probiotics in vitro. Carbohydrate Polymers, 2015,125(1):232-240.
doi: 10.1016/j.carbpol.2015.02.040 |
[1] | 王彩香,袁文敏,刘娟娟,谢晓宇,马麒,巨吉生,陈炟,王宁,冯克云,宿俊吉. 西北内陆早熟陆地棉品种的综合评价及育种演化[J]. 中国农业科学, 2023, 56(1): 1-16. |
[2] | 冯向前,殷敏,王孟佳,马横宇,褚光,刘元辉,徐春梅,章秀福,张运波,王丹英,陈松. 南方稻区“早籼晚粳”栽培模式晚季灌浆期气象因子对晚粳稻品质的影响[J]. 中国农业科学, 2023, 56(1): 46-63. |
[3] | 朱大伟,章林平,陈铭学,方长云,于永红,郑小龙,邵雅芳. 中国优质稻品种品质及食味感官评分值的特征[J]. 中国农业科学, 2022, 55(7): 1271-1283. |
[4] | 吕馨宁,王玥,贾润普,王胜男,姚玉新. 不同温度下褪黑素处理对‘阳光玫瑰'葡萄采后品质的影响[J]. 中国农业科学, 2022, 55(7): 1411-1422. |
[5] | 彭雪,高月霞,张琳煊,高志强,任亚梅. 高能电子束辐照对马铃薯贮藏品质及芽眼细胞超微结构的影响[J]. 中国农业科学, 2022, 55(7): 1423-1432. |
[6] | 宗成, 吴金鑫, 朱九刚, 董志浩, 李君风, 邵涛, 刘秦华. 添加剂对农副产物和小麦秸秆混合青贮发酵品质的影响[J]. 中国农业科学, 2022, 55(5): 1037-1046. |
[7] | 冯宣军, 潘立腾, 熊浩, 汪青军, 李静威, 张雪梅, 胡尔良, 林海建, 郑洪建, 卢艳丽. 南方地区120份甜、糯玉米自交系重要目标性状和育种潜力分析[J]. 中国农业科学, 2022, 55(5): 856-873. |
[8] | 蒋晶晶,周天阳,韦陈华,邬佳宁,张耗,刘立军,王志琴,顾骏飞,杨建昌. 不同栽培措施对超级稻强、弱势粒品质的影响[J]. 中国农业科学, 2022, 55(5): 874-889. |
[9] | 卞能飞, 孙东雷, 巩佳莉, 王幸, 邢兴华, 金夏红, 王晓军. 花生烘烤食用品质评价及指标筛选[J]. 中国农业科学, 2022, 55(4): 641-652. |
[10] | 向妙莲, 吴帆, 李树成, 王印宝, 肖刘华, 彭文文, 陈金印, 陈明. 褪黑素处理对梨果实采后黑斑病及贮藏品质的影响[J]. 中国农业科学, 2022, 55(4): 785-795. |
[11] | 赖春旺, 周小娟, 陈燕, 刘梦雨, 薛晓东, 肖学宸, 林文忠, 赖钟雄, 林玉玲. 龙眼乙烯合成途径基因鉴定及响应ACC处理的分析[J]. 中国农业科学, 2022, 55(3): 558-574. |
[12] | 宋江涛,谌丹丹,公旭晨,商祥明,李春龙,蔡永喜,岳建平,王帅玲,张卜芬,谢宗周,刘继红. 人工疏果对‘爱媛28’橘橙果实糖酸含量及代谢基因表达的影响[J]. 中国农业科学, 2022, 55(23): 4688-4701. |
[13] | 贾晓辉,张鑫楠,刘佰霖,马风丽,杜艳民,王文辉. 低O2/高CO2气调结合1-MCP对‘玉露香’梨贮藏品质的影响[J]. 中国农业科学, 2022, 55(23): 4717-4727. |
[14] | 余维宝,李楠,寇一泓,曹新有,司纪升,韩守威,李豪圣,张宾,王法宏,张海林,赵鑫,李华伟. 山东省强筋小麦品质评价及与气象因子关系分析[J]. 中国农业科学, 2022, 55(22): 4383-4397. |
[15] | 刘浩,庞婕,李欢欢,强小嫚,张莹莹,宋嘉雯. 叶面喷施硒与土壤水分耦合对番茄产量和品质的影响[J]. 中国农业科学, 2022, 55(22): 4433-4444. |
|