[1] |
MA Y X, MINASNY B, WU C F . Mapping key soil properties to support agricultural production in Eastern China. Geoderma Regional, 2017,10:144-153.
|
[2] |
杨琳, Sherif F, Sheldon H, 朱阿兴, 秦承志, 徐志刚. 基于土壤-环境关系的更新传统土壤图研究. 土壤学报, 2010,47(6):1039-1049.
|
|
YANG L, SHERIF F, SHELDON H, ZHU A X, QIN C Z, XU Z G . Updating conventional soil maps using knowledge on soil- environment relationships extracted from the maps. Acta Pedologica Sinica, 2010,47(6):1039-1049. (in Chinese)
|
[3] |
王幼奇, 白一茹, 赵云鹏 . 宁夏砂田小尺度土壤性质空间变异特征与肥力评价. 中国农业科学, 2016,49(23):4566-4575. DOI: 10.3864/j.issn.0578-1752.2016.23.009.
|
|
WANG Y Q, BAI Y R, ZHAO Y P . Assessment of soil fertility and its spatial variability based on small scale in the gravel mulched field of NingXia. Scientia Agricultura Sinica, 2016,49(23):4566-4575. DOI: 10.3864/j.issn.0578-1752.2016.23.009. (in Chinese)
|
[4] |
LAGACHERIE P, MCBRATNEY A B . Spatial soil information systems and spatial soil inference systems: perspectives for digital soil mapping. Developments in Soil Science, 2006,31:3-22.
|
[5] |
ZHU A X, BAND L, VERTESSY R, DUTTON B . Derivation of soil properties using a soil land inference model (SoLIM). Soil Science Society of America Journal, 1997,61(2):523-533.
|
[6] |
王飞, 杨胜天, 丁建丽, 魏阳, 葛翔宇, 梁静 . 环境敏感变量优选及机器学习算法预测绿洲土壤盐分. 农业工程学报, 2018,34(22):102-110. DOI: 10.11975/j.issn.1002-6819.2018.22.013.
|
|
WANG F, YANG S T, DING J L, WEI Y, GE X Y, LIANG J . Environmental sensitive variable optimization and machine learning algorithm using in soil salt prediction at oasis. Transactions of the Chinese Society of Agricultural Engineering, 2018,34(22):102-110. DOI: 10.11975/j.issn.1002-6819.2018.22.013. (in Chinese)
|
[7] |
ZHANG H, WU P B, YIN A J, YANG X H, ZHANG M, GAO C . Prediction of soil organic carbon in an intensively managed reclamation zone of Eastern China: A comparison of Multiple Linear Regressions and the Random Forest model. Science of the Total Environment, 2017,592:704-713.
|
[8] |
BODAGHABADI B M, MARTÍNEZ-CASASNOVAS J, SALEHI M H, MOHAMMADI J, BORUJENI E I, TOOMANIAN N, GANDOMKAR A. Digital soil mapping using Artificial Neural Networks and terrain-related attributes. Pedosphere, 2015,25(4):580-591.
|
[9] |
MAHMOUDABADI E, KARIMI A, HAGHNIA G H, SEPEHR A . Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental Monitoring Assessment, 2017,189(10):500.
|
[10] |
鲁如坤 . 土壤农业化学分析方法. 北京: 中国农业科技出版社, 2000.
|
|
LU R K. Methods for Soil Agrochemistry Analysis. Beijing: China Agricultural Science and Technology Press, 2000. ( in Chinese)
|
[11] |
ZHOU Y, HARTEMINK A E, SHI Z, LIANG Z Z, LU Y L . Land use and climate change effects on soil organic carbon in North and Northeast China. Science of the Total Environment, 2019,647:1230-1238.
|
[12] |
ABDEL-KADER F H . Digital soil mapping at pilot sites in the northwest coast of Egypt: A Multinomial Logistic Regression approach. The Egyptian Journal of Remote Sensing and Space Science, 2011,14(1):29-40.
|
[13] |
PENG J, BISWAS A, JIANG Q S, ZHAO R Y, HU J, HU B F, SHI Z . Estimating soil salinity from remote sensing and terrain data in southern Xinjiang Province, China. Geoderma, 2019,337:1309-1319.
|
[14] |
朱阿兴 . 精细数字土壤普查模型与方法. 北京: 科学出版社, 2008: 21-57.
|
|
ZHU A X. Model and Method of Fine Digital Soil Survey. Beijing: Science Press, 2008: 21-57. (in Chinese)
|
[15] |
MEHNATKESH A, AYOUBI S, JALALIAN A, SAHRAWAT K L . Relationships between soil depth and terrain attributes in a semi arid hilly region in western Iran. Journal of Mountain Science, 2013,10(1):163-172.
|
[16] |
QIN Z H, KARNIELI A, BERLINER P . A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. International Journal of Remote Sensing, 2001,22(18):3719-3746.
|
[17] |
LIU L F, JI M, BUCHROITHNER M . Combining partial least squares and the gradient-boosting method for soil property retrieval using visible Near-Infrared shortwave infrared spectra. Remote Sensing, 2017,9(12):1299.
|
[18] |
GE X Y, WANG J Z, DING J L, CAO X Y, ZHANG Z P, LIU J, LI X H . Combining UAV-based hyperspectral imagery and machine learning algorithms for soil moisture content monitoring. PeerJ, 2019,7:e6926.
|
[19] |
DING J L, YANG A X, WANG J Z, SAGAN V, YU D L . Machine-learning-based quantitative estimation of soil organic carbon content by VIS/NIR spectroscopy. PeerJ, 2018,6:e5714.
|
[20] |
CORETEAM R . R:A language and environment for statistical computing. Computing, 2015,14:12-21.
|
[21] |
LAWRENCE I, LIN K . A concordance correlation coefficient to evaluate reproducibility. Biometrics, 1989,45(1):255-268.
|
[22] |
WANG J Z, DING J L, ABULIMITI A, CAI L H . Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 2018,6:e4703.
|
[23] |
ZERAATPISHEH M, AYOUBI S, JAFARI A, TAJIK S, FINKE P . Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma, 2019,338:445-452.
|
[24] |
LOBELL D, LESCH S, CORWIN D, ULMER M, ANDERSON K, POTTS D, DOOLITTLE J, MATOS M, BALTES M . Regional-scale assessment of soil salinity in the Red River Valley using multi-year MODIS EVI and NDVI. Journal of Environmental Quality, 2010,39(1):35-41.
|
[25] |
陈红艳, 赵庚星, 陈敬春, 王瑞燕, 高明秀 . 基于改进植被指数的黄河口区盐渍土盐分遥感反演. 农业工程学报, 2015,31(5):107-114. DOI: 10.3969/j.issn.1002-6819.2015.05.016.
|
|
CHEN H Y, ZHAO G X, CHEN J C, WANG R Y, GAO M X . Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):107-114. DOI: 10.3969/j.issn.1002-6819.2015.05.016. (in Chinese)
|
[26] |
TRIKI FOURATI H, BOUAZIZ M, BENZINA M, BOUAZIZ S . Modeling of soil salinity within a semi-arid region using spectral analysis. Arabian Journal of Geosciences, 2015,8(12):11175-11182.
|
[27] |
ALLBED A, KUMAR L, ALDAKHEEL Y Y . Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma, 2014,230:1-8.
|
[28] |
MENG L, ZHOU S W, ZHANG H, BI X L . Estimating soil salinity in different landscapes of the Yellow River Delta through Landsat OLI/TIRS and ETM+ Data. Journal of Coastal Conservation, 2016,20(4):271-279.
|
[29] |
GERSHMAN S J, NIV Y . Perceptual estimation obeys Occam's razor. Frontiers in Psychology, 2013,4:623.
|
[30] |
古丽波斯坦·巴图 . 渭—库绿洲不同土地利用方式下土壤理化性质分析[D]. 乌鲁木齐: 新疆大学, 2018.
|
|
GULIBOSITAN-BATU . Analysis of soil physical and chemical properties under different land use/land cover in Weigan and Kuqa rivers delta oasis[D]. Urumqi: Xinjiang University, 2018. ( in Chinese)
|
[31] |
谷海斌 . 灌区尺度土壤特性空间变异性研究[D]. 乌鲁木齐: 新疆农业大学, 2011.
|
|
GU H B . Research on spatial variation of properties in irrigation area scale[D]. Urumqi: Xinjiang Agricultural University, 2011. ( in Chinese)
|
[32] |
王飞, 杨胜天, 魏阳, 杨晓东, 丁建丽 . 基于RF和SGT算法的子区优先建模对绿洲尺度土壤盐度预测精度的影响. 中国农业科学, 2018,51(24):4659-4676. DOI: 10.3864/j. issn.0578-1752.2018.24. 007.
|
|
WANG F, YANG S T, WEI Y, YANG X D, DING J L . Influence of sub-region priority modeling constructed by random forest and stochastic gradient treeboost on the accuracy of soil salinity prediction in oasis scale. Scientia Agricultura Sinica, 2018,51(24):4659-4676. DOI: 10.3864/j.issn.0578-1752.2018.24.007.(in Chinese)
|
[33] |
DING J L, YU D L . Monitoring and evaluating spatial variability of soil salinity in dry and wet seasons in the Werigan-Kuqa Oasis, China, using remote sensing and electromagnetic induction instruments. Geoderma, 2014,235:316-322.
|
[34] |
BRUBAKER S, JONES A, LEWIS D, FRANK K . Soil properties associated with landscape position. Soil Science Society of America Journal, 1993,57(1):235-239.
|
[35] |
FALAHATKAR S, HOSSEINI S M, AYOUBI S, SALMANMAHINY A . Predicting soil organic carbon density using auxiliary environmental variables in Northern Iran. Archives of Agronomy Soil Science, 2016,62(3):375-393.
|
[36] |
葛翔宇, 丁建丽, 王敬哲, 王飞, 蔡亮红, 孙慧兰 . 基于竞争适应重加权采样算法耦合机器学习的土壤含水量估算. 光学学报, 2018,38(10):393-400. DOI: 10.3788/AOS201838.1030001.
|
|
GE X Y, DING J L, WANG J Z, WANG F, CAI L H, SUN H L . Estimation of soil moisture based on CARS algorithm coupled with machine learning. Acta Optica Sinca, 2018,38(10):393-400. DOI: 10.3788/AOS201838.1030001. (in Chinese)
|
[37] |
CHEN S C, LIANG Z Z, WEBSTER R, ZHANG G L, ZHOU Y, TENG H F, HU B F, ARROUAYS D, SHI Z . A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Science of the Total Environment, 2019,655:273-283.
|
[38] |
彭杰, 刘焕军, 史舟, 向红英, 迟春明 . 盐渍化土壤光谱特征的区域异质性及盐分反演. 农业工程学报, 2014,30(17):167-174. DOI: 10.3969/j.issn.1002-6819.2014.17.022.
|
|
PENG J, LIU H J, SHI Z, XIANG H Y, CHI C M . Regional heterogeneity of hyperspectral characteristics of salt-affected soil and salinity inversion. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(17):167-174. DOI: 10.3969/j.issn.1002-6819. 2014.17.022. (in Chinese)
|
[39] |
WANG H F, CHEN Y W, ZHANG Z T, CHEN H R, LI X W, WANG M X, CHAI H Y . Quantitatively estimating main soil water-soluble salt ions content based on visible-near infrared wavelength selected using GC, SR and VIP. PeerJ, 2019,7:e6310.
|
[40] |
MOSLEH Z, SALEHI M H, JAFARI A, BORUJENI I E, MEHNATKESH A . The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring Assessment, 2016,188(3):195.
|