中国农业科学 ›› 2015, Vol. 48 ›› Issue (2): 229-240.doi: 10.3864/j.issn.0578-1752.2015.02.03

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

木质素与生物燃料生产:降低含量或解除束缚?

王晓娟1,2,杨阳1,张晓强1,姜少俊1,宋 瑜1,周海辰1,金樑1,2   

  1. 1兰州大学草地农业科技学院/草地农业生态系统国家重点实验室,兰州 730020
    2上海科技馆/上海自然博物馆,上海 200127
  • 收稿日期:2014-06-13 出版日期:2015-01-16 发布日期:2015-01-16
  • 通讯作者: 金樑
  • 作者简介:王晓娟,E-mail:xiaojuanwang@lzu.edu.cn
  • 基金资助:
    国家自然科学基金(31270558)、兰州大学中央高校基本科研业务费专项资金(lzujbky-2013-86)

To Make Biofuel: Cutting the Lignin or Loosening Lignin’s Grip?

WANG Xiao-juan1,2, YANG Yang1, ZHANG Xiao-qiang1, JIANG Shao-jun1, SONG Yu1, ZHOU Hai-chen1, JIN Liang1,2   

  1. 1School of Pastoral Agriculture Science and Technology, Lanzhou University/State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020
    2Shanghai Museum of Natural History, Shanghai Science and Technology Museum, Shanghai 200127
  • Received:2014-06-13 Online:2015-01-16 Published:2015-01-16

摘要: 生物质能源作为可再生性替代能源之一,其开发利用可为解决当前全球变暖、化石能源成本飞涨和环境污染等重大问题提供新的途径。木质纤维素是植物细胞壁的主要组成成分,也是地球上最丰富的可再生资源之一,可转化为生物酒精等液体生物燃料。木质纤维素主要包括纤维素、半纤维素和木质素,三者之间由酯键、醚键和糖苷键等化学键连接,形成的木质素-糖类复合体是一种共价键聚合物,这些细胞壁成分的组成及其互作会影响多糖的水解作用,进而影响木质纤维素的转化利用效率,其中,木质素被认为是阻碍纤维素酶分解的主要物理障碍。当前,提高能源作物生物质的田间种植、生产效率及其工厂化降解、转化效率是生物质能源发展的热点和难点问题。由于木质素是木质纤维素生物量中除多糖之外含量最高的成分之一,提高木质素利用效率成为影响整个木质纤维素生物冶炼产能的关键。为此,文中从降低木质素含量和解除木质素束缚的角度出发,系统回顾了木质素在植物细胞壁中的发育沉积特征及其遗传改造研究进展,探究从植物细胞壁结构组成角度优化木质纤维素性状提高生物燃料产率的可能性,重点论述了降低能源植物木质素含量的遗传选育和基因改良策略,以及木质纤维素生物冶炼的预处理和分离技术。一方面,通过常规育种程序培育低木质素含量的生物能源作物品种,或是通过基因工程技术下调木质素的生物合成,对于提高木质纤维素利用效率和降低生物燃料生产成本均具有积极的作用。另一方面,以解除木质素束缚为目的的生物冶炼预处理技术是提高木质纤维素生物燃料工厂化生产效率的重要环节,主要包括酸预处理法、碱预处理法和有机溶剂预处理法,高效的预处理技术能够显著提高纤维素酶水解效率,增加生物酒精产量。文中最后对木质素与生物燃料生产的研究与应用前景进行了展望。

关键词: 生物质能源, 生物燃料, 木质纤维素, 木质素, 生物冶炼

Abstract: Biomass energy from renewable resources has been considered an alternative source of energy, and the growing contribution of biomass to the world energy also gives a new way to solve the problems such as global warming, the soaring fuel costs and environmental pollution. Lignocellulose is the main component of plant cell walls and is also one of the most abundant renewable resources on earth. Lignocellulosic biomass is principally composed of cellulose, hemicellulose and lignin, which can be converted into liquid biofuels such as bioethanol. The linkages between lignin and carbohydrates (hemicellulose and cellulose) are formed by ester, ether and glycosidic types of bonds, which formed a kind of covalently bonded aggregates called lignin-carbohydrate complex. The compositions of biomass and interaction of these components in the cell wall affect the hydrolysis of carbohydrates, and then determine the efficiency of lignocelluosic biomass utilization. Although lignin is one of the most abundant components in the lignocellulosic biomass besides polysaccharides, it has been considered as a physical barrier to prevent enzyme access to cellulose structure. Therefore, to improve the biomass production in the field and the effects of the factory conversions of biomass into biofuel are the two most concerned issues. That is, how to improve the utilization of lignin efficiency has been becoming a hot issue of biorefinery in biomass energy development. In this paper, the characteristics of development and sedimentary of lignin in plant cell walls, genetic improvement and genetic modification of lignin trait in bioenergy crops have been systematically reviewed, which is mainly from the point of view of cutting the lignin to enhance the overall lignocellulosic biorefinery. To select low-lignin-content energy crops, considerable genetic improvements can be expected through traditional breeding program or down regulation the levels of enzymes involved in the reactions specific for lignin monomer synthesis, which would reduce the amount of chemicals and energy used in pretreatment in lignocellulosic biorefinery. Furthermore, to explore the optimization of lignocellulose characters and the possibility of increased biofuel production rate, the technological means of biological refining pretreatment, transformation and biofuel production have been discussed for overcoming the cost barrier of lignocellulosic biomass utilization in the purpose of loosening lignin’s grip. Several different pretreatment and fractionation processes such as acid, alkaline and organic solvent hydrolysis can be used for treatment of lignocellulosic materials. And successful pretreatment can significantly improve the hydrolysis and increase the yield of bioethanol. In addition, the perspectives on hot issues and biofuel industry involved in studies of lignin were discussed.

Key words: biomass energy, biofuel, lignocellulosic biomass, lignin, biorefinery