中国农业科学 ›› 2015, Vol. 48 ›› Issue (2): 229-240.doi: 10.3864/j.issn.0578-1752.2015.02.03
王晓娟1,2,杨阳1,张晓强1,姜少俊1,宋 瑜1,周海辰1,金樑1,2
收稿日期:
2014-06-13
出版日期:
2015-01-16
发布日期:
2015-01-16
通讯作者:
金樑
作者简介:
王晓娟,E-mail:xiaojuanwang@lzu.edu.cn
基金资助:
WANG Xiao-juan1,2, YANG Yang1, ZHANG Xiao-qiang1, JIANG Shao-jun1, SONG Yu1, ZHOU Hai-chen1, JIN Liang1,2
Received:
2014-06-13
Online:
2015-01-16
Published:
2015-01-16
摘要: 生物质能源作为可再生性替代能源之一,其开发利用可为解决当前全球变暖、化石能源成本飞涨和环境污染等重大问题提供新的途径。木质纤维素是植物细胞壁的主要组成成分,也是地球上最丰富的可再生资源之一,可转化为生物酒精等液体生物燃料。木质纤维素主要包括纤维素、半纤维素和木质素,三者之间由酯键、醚键和糖苷键等化学键连接,形成的木质素-糖类复合体是一种共价键聚合物,这些细胞壁成分的组成及其互作会影响多糖的水解作用,进而影响木质纤维素的转化利用效率,其中,木质素被认为是阻碍纤维素酶分解的主要物理障碍。当前,提高能源作物生物质的田间种植、生产效率及其工厂化降解、转化效率是生物质能源发展的热点和难点问题。由于木质素是木质纤维素生物量中除多糖之外含量最高的成分之一,提高木质素利用效率成为影响整个木质纤维素生物冶炼产能的关键。为此,文中从降低木质素含量和解除木质素束缚的角度出发,系统回顾了木质素在植物细胞壁中的发育沉积特征及其遗传改造研究进展,探究从植物细胞壁结构组成角度优化木质纤维素性状提高生物燃料产率的可能性,重点论述了降低能源植物木质素含量的遗传选育和基因改良策略,以及木质纤维素生物冶炼的预处理和分离技术。一方面,通过常规育种程序培育低木质素含量的生物能源作物品种,或是通过基因工程技术下调木质素的生物合成,对于提高木质纤维素利用效率和降低生物燃料生产成本均具有积极的作用。另一方面,以解除木质素束缚为目的的生物冶炼预处理技术是提高木质纤维素生物燃料工厂化生产效率的重要环节,主要包括酸预处理法、碱预处理法和有机溶剂预处理法,高效的预处理技术能够显著提高纤维素酶水解效率,增加生物酒精产量。文中最后对木质素与生物燃料生产的研究与应用前景进行了展望。
王晓娟,杨阳,张晓强,姜少俊,宋瑜,周海辰,金樑. 木质素与生物燃料生产:降低含量或解除束缚?[J]. 中国农业科学, 2015, 48(2): 229-240.
WANG Xiao-juan1,2, YANG Yang, ZHANG Xiao-qiang, JIANG Shao-jun, SONG Yu, ZHOU Hai-chen, JIN Liang. To Make Biofuel: Cutting the Lignin or Loosening Lignin’s Grip?[J]. Scientia Agricultura Sinica, 2015, 48(2): 229-240.
[1] Cai L, Sudholt A, Lee D J, Egolfopoulos F N, Pitsch H, Westbrook C K, Sarathy S M. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames. Combustion and Flame, 2014, 161: 798-809.
[2] Gray K A, Zhao L, Emptage M. Bioethanol. Current Opinion in Chemical Biology, 2006, 10(2): 141-146.
[3] Carrier M, Joubert J E, Danje S, Hugo T, Görgens J, Knoetze J H. Impact of the lignocellulosic material on fast pyrolysis yields and product quality. Bioresource Technology, 2013, 150: 129-138.
[4] Lee D S, Wi S G, Lee S J, Lee Y G, Kim Y S, Bae H J. Rapid saccharification for production of cellulosic biofuels. Bioresource Technology, 2014, 158: 239-247.
[5] Zeikus J G, Jain M K, Elankovan P. Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology, 1999, 51: 545-552.
[6] Zhao Y, Lu W, Chen J, Zhang X, Wang H. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Frontiers of Environmental Science & Engineering, 2014, 8(2): 151-161.
[7] Thevenot M, Dignac M F, Rumpel C. Fate of lignins in soils: A review. Soil Biology & Biochemistry, 2010, 42: 1200-1211.
[8] Zeng Y, Zhao S, Yang S, Ding S Y. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Current Opinion in Biotechnology, 2014, 27: 38-45.
[9] Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiology, 2010, 153: 895-905.
[10] Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annual Review of Plant Biology, 2003, 54: 519-546.
[11] Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X , Wang Z Y, Dixon R A. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. The Plant Cell, 2013, 25(10): 3976-3987.
[12] 王媛, 杨红玉, 程在全. SA诱导拟南芥对灰霉病的抗性与木质素含量的关系. 植物保护, 2007, 33(4): 50-54.
Wang Y, Yang H Y, Cheng Z Q. Relationship between SA-induced resistance to grey mold in Arabidopsis and the lignin contents. Plant Protection, 2007, 33(4): 50-54. (in Chinese)
[13] Leonowicz A, Matuszewska A, Luterek J, Ziegenhagen D, Wojtas-Wasilewska M, Cho N S, Hofrichter M, Rogalski J. Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 1999, 27(2/3): 175-185.
[14] Hu Z H, Wen Z Y. Enhancing enzymatic digestibility of switchgrass by microwave-assisted alkali pretreatment. Biochemical Engineering Journal, 2008, 38(3): 369-378.
[15] 蒋挺大. 木质素. 北京: 化学工业出版社, 2008.
Jiang T D. Lignin. Beijing: Chemical Industry Press, 2008. (in Chinese)
[16] 宋哲玉, 徐培华, 陶家朴. 木质素胺类沥青乳化剂分子结构式研究. 西安公路交通大学学报, 1996, 16(1): 4-7.
Song Z Y, Yu P H, Tao J P. Study of asphalt emulsion molecule composition of lignin amine. Journal of Xi'an Highway University, 1996, 16(1): 4-7. (in Chinese)
[17] Hafrén J, Fujino T, Itoh T, Westermark U, Terashima N. Ultrastructural changes in the compound middle lamella of Pinus thunbergii during lignification and lignin removal. Holzforschung, 2000, 54(3): 234-240.
[18] Medie F M, Davies G J, Drancourt M, Henrissat B. Genome analyses highlight the different biological roles of cellulases. Nature Reviews Microbiology, 2012, 10: 227-234.
[19] 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展. 中国农业科学, 2013, 46(8): 1694-1705.
Wang X J, Zhang S Z, Lin S S, Deng Z G, Jin L. Advances in study on bio-energy utilization of stem cell wall components in alfalfa (Medicago sativa L.). Scientia Agricultura Sinica, 2013, 46(8): 1694-1705. (in Chinese)
[20] Du X Y, Gellerstedt G, Li J B. Universal fractionation of lignin–carbohydrate complexes (LCCs) from lignocellulosic biomass: an example using spruce wood. The Plant Journal, 2013, 74: 328-338.
[21] Ramos L P. The chemistry involved in the steam treatment of lignocellulosic materials. Química Nova, 2003, 26: 863-871.
[22] Reale S, Tullio A D, Spreti N, Angelis F D. Mass spectrometry in biosynthetic and structural investigation of lignins. Mass Spectrometry Reviews, 2004, 23: 87-126.
[23] Wang H, Tucker M, Ji Y. Recent development in chemical depolymerization of lignin: A review. Journal of Applied Chemistry, 2013, Article ID 838645.
[24] Wen J L, Sun S L, Xue B L, Sun R C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6: 359-391.
[25] Higuchit T. Lignin biochemistry, biosynthesis and biodegradation. Wood Science and Technology, 1990, 24: 23-63.
[26] 邱卫华, 陈洪章. 木质素的结构、功能及高值化利用. 纤维素科学与技术, 2006, 14(1): 52-59.
Qiu W H, Chen H Z. Structure, function and higher value application of lignin. Journal of Cellulose Science and Technology, 2006, 14(1): 52-59. (in Chinese)
[27] Lowry J B, Conlan L L, Schlink A C, McSweeney C S. Acid detergent dispersible lignin in tropical grasses. Journal of the Science of Food and Agriculture, 1994, 65(1): 41-49.
[28] Fukushima R S, Hatfield R D. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. Journal of Agricultural and Food Chemistry, 2001, 49: 31-33.
[29] Hatfield R, Fukushima R S. Can lignin be accurately measured? Crop Science, 2005, 45: 832-839.
[30] Yao S, Wu G, Xing M, Zhou S, Pu J. Determination of lignin content in Acacia spp. using near-infrared reflectance spectroscopy. BioResources, 2010, 5(2): 556-562.
[31] Fukushima R S, Hatfield R D. Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. Journal of Agricultural and Food Chemistry, 2004, 52(12): 3713-3720.
[32] Pedersen J F, Vogel K P, Funnell D L. Impact of reduced lignin on plant fitness. Crop Science, 2005, 45: 812-819.
[33] Fike J H, Parrish D J, Wolf D D, Balasko J A, Green J T, Rasnake M, Reynolds J H. Long-term yield potential of switchgrass for biofuel systems. Biomass and Bioenergy, 2006, 30: 198-206.
[34] Bhandari H S, Walker D W, Bouton J H, Saha M C. Effects of ecotypes and morphotypes in feedstock composition of switchgrass (Panicum virgatum L.). Global Change Biology Bioenergy, 2014, 6: 26-34.
[35] Casler M D, Jung H G, Coblentz W K. Clonal selection for lignin and etherified ferulates in three perennial grasses. Crop Science, 2008, 48: 424-433.
[36] Godin B, Lamaudière S, Agneessens R, Schmit T, Goffart J P, Stilmant D, Gerin P A, Delcarte J. Chemical characteristics and biofuel potential of several vegetal biomasses grown under a wide range of environmental conditions. Industrial Crops and Products, 2013, 48: 1-12.
[37] Kanwarpal S D. Maize biomass yield and composition for biofuels. Crop Science, 2007, 47: 2211-2227.
[38] Cardona C A. Sánchez Ó J. Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technology, 2007, 98: 2415-2457.
[39] Gressel J. Transgenics are imperative for biofuel crops. Plant Science, 2008, 174(3): 246-263.
[40] Xie G S, Peng L C. Genetic engineering of energy crops: a strategy for biofuel production in China. Journal of Integrative Plant Biology, 2011, 53 (2): 143-150.
[41] Chapple C, Ladisch M, Meilan R. Loosening lignin’s grip on biofuel production. Nature, 2007, 200: 7.
[42] Dien B S, Miller D J, Hector R E, Dixon R A, Chen F, McCaslin M, Reisen P, Sarath G, Cotta M A. Enhancing alfalfa conversion efficiencies for sugar recovery and ethanol production by altering lignin composition. Bioresource Technology, 2011, 102(11): 6479-6486.
[43] Getachew G, Ibáñez A M, Pittroff W, Dandekar A M, McCaslin M, Goyal S, Reisen P, DePeters E J, Putnam D H. A comparative study between lignin down regulated alfalfa lines and their respective unmodified controls on the nutritional characteristics of hay. Animal Feed Science and Technology, 2011, 170(3/4): 192-200.
[44] Chen F, Dixon R A. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnology, 2007, 25: 759-761.
[45] Zhong R Q, Zheng H Y. Regulation of cell wall biosynthesis. Current Opinion in Plant Biology, 2007, 10: 564-572.
[46] Kubo M, Udagawa M, Nishikubo N, Horiguchi G, Yamaguchi M, Ito J, Mimura T, Fukuda H, Demura T. Transcription switches for protoxylem and metaxylem vesseI formation. Genes Development, 2005, 19(16): 1855-1860.
[47] Zhong R, Richardson E A, Ye Z H. Two NAC domain transcription factors, SND1 and NST1, function redundantly in regulation of secondary wall synthesis in fibers of Arabidopsis. Planta, 2007, 225: 1603-1611.
[48] Goicoechea M, Lacombe E, Legay S, Mihaljevic S, Rech P, Jauneau A, Lapierre C, Pollet B, Verhaegen D, Chaubet-Gigot N, Grima-Pettenati J. EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis. The Plant Journal, 2005, 43: 553-567.
[49] Karpinska B, Karlsson M, Srivastava M, Stenberg A, Schrader J, Sterky F, Bhalerao R, Wingsle G. MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen. Plant Molecular Biology, 2004, 56: 255-270.
[50] Tamagnone L, Merida A, Parr A, Mackay S, Culianez-Macia F A, Roberts K, Martin C. The AmMYB308 and AmMYB330 transcription factors from antirrhinum regulate phenylpropanoid and lignin biosynthesis in transgenic tobacco. The Plant Cell, 1998, 10: 135-154.
[51] Patzlaff A, McInnis S, Courtenay A, Surman C, Newman L J, Smith C, Bevan M W, Mansfield S, Whetten R W, Sederoff R R, Campbell M M. Characterization of a pine MYB that regulates lignification. The Plant Journal, 2003, 36: 743-754.
[52] Zhong R, Richardson E A, Ye Z H. The MYB46 transcription factor is a direct target of SND1 and regulates secondary wall biosynthesis in Arabidopsis. The Plant Cell, 2007, 19: 2776-2792.
[53] Mitsuda N, Sekic M, Shinozaki K, Ohme-Takagi M. The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. The Plant Cell, 2005, 17(11): 2993-3006.
[54] Zhong R, Demura T, Ye Z H. SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. The Plant Cell, 2006, 18(11): 3158-3170.
[55] Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in the ectopic lignification and dark -photomorphogenic components of the det3 mutant phenotype. The Plant Journal, 2004, 37: 239-250.
[56] Bhargava A, Ahad A, Wang S, Mansfield S D, Haughn G W, Douglas C J, Brian E. Ellis B E. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta, 2013, 237: 1199-1211.
[57] Jackson L A, Shadle G L, Zhou R, Nakashima J, Chen F, Dixon R A. Improving saccharification efficiency of alfalfa stems through modification of the terminal stages of monolignol biosynthesis. Bioenergy Research, 2008, 1(3/4): 180-192.
[58] 胡可, 严雪锋, 栗丹, 唐晓梅, 杨宏, 王艳, 邓洪渊, 马欣荣. 沉默CCR 和CAD基因培育低木质素含量转基因多年生黑麦草. 草业学报, 2013, 22(5): 72-83.
Hu K, Yan X F, Li D, Tang X M, Yang H, Wang Y, Deng H Y, Ma X R. Genetic improvement of perennial ryegrass with low lignin content by silencing genes of CCR and CAD. Acta Prataculture Sinica, 2013, 22(5): 72-83. (in Chinese)
[59] Zhao Q, Tobimatsu Y, Zhou R, Pattathil S, Giraldo L G, Fu C X, Jackson L A, Hahn M G, Kim H, Chen F, Ralph J, Dixon R A. Loss of function of cinnamyl alcohol dehydrogenase1 leads to unconventional lignin and a temperature sensitive growth defect in Medicago truncatula. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(33): 13660-13665.
[60] Vanholme R, Cesarino I, Rataj K, Xiao Y G, Sundin L, Goeminne G, Kim H, Joanna C, Morreel K, Araujo P, Welsh L, Haustraete J, McClellan C, Vanholme B, Ralph J, Simpson G G, Halpin C, Boerjan W. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science, 2013, 341: 1103-1106.
[61] Lee Y, Rubio M C, Alassimone J, Geldner N. A mechanism for localized lignin deposition in the endodermis. Cell, 2013, 153: 402-412.
[62] Toledano A, Serrano L, Labidi J. Improving base catalyzed lignin depolymerization by avoiding lignin repolymerization. Fuel, 2014, 116: 617-624.
[63] Kumar R, Wyman C E. Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnology and Bioengineering, 2009, 102: 1544-1557.
[64] Sannigrahi P, Pu Y, Ragauskas A. Cellulosic biorefineries: Unleashing lignin opportunities. Current Opinion in Environmental Sustainability, 2010, 2: 383-393.
[65] Zhao X B, Cheng K, Liu D H. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Applied Microbiology and Biotechnology, 2009, 82: 815-827.
[66] Brandt A, Ray M J, To T Q, Leak D J, Murphy R J, Welton T. Ionic liquid pretreatment of lignocellulosic biomass with ionic liquid–water mixtures. Green Chemistry, 2011, 13: 2489-2499.
[67] Daniel L, Hodge W D B. Impacts of delignification and hot water pretreatment on the water induced cell wall swelling behavior of grasses and its relation to cellulolytic enzyme hydrolysis and binding. Cellulose, 2014, 21: 221-235.
[68] Taherzadeh M J, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources, 2007, 2: 472-499.
[69] Wettstein S G, Alonso D M, Gürbüz E I, Dumesic J A. A roadmap for conversion of lignocellulosic biomass to chemicals and fuels. Current Opinion in Chemical Engineering, 2012, 1: 218-224.
[70] Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnology and Bioengineering, 2004, 86(1): 88-98.
[71] Xiao W, Clarkson W W. Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation, 1997, 8(1): 61-66.
[72] Mesa L, González E, Cara C, González M, Castro E, Mussatto S I. The effect of organosolv pretreatment variables on enzymatic hydrolysis of sugarcane bagasse. Chemical Engineering Journal, 2011, 168: 1157-1162.
[73] Kassim E A, El-Shahed A S. Enzymatic and chemical hydrolysis of certain cellulosic materials. Agricultural Wastes, 1986, 17: 229-233.
[74] Xu Z, Wang Q, Jiang Z, Yang X X, Ji Y. Enzymatic hydrolysis of pretreated soybean straw. Biomass Bioenergy, 2007, 31: 162-167.
[75] Silverstein R A, Chen Y, Sharma-Shivappa R R, Boyette M D, Osborne J. A comparison of chemical pretreatment methods for improving saccharification of cotton stalks. Bioresource Technology, 2007, 98: 3000-3011.
[76] Kim T H, Yoo C G, Lamsal B P. Front-end recovery of protein from lignocellulosic biomass and its effects on chemical pretreatment and enzymatic saccharification. Bioprocess and Biosystems Engineering, 2013, 36: 687-694.
[77] Pan X, Gilkes N, Kadla J, Pye K, Saka S, Gregg D, Ehara K, Xie D, Lam D, Saddler J. Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: Optimization of process yields. Biotechnology and Bioengineering, 2006, 94: 851-861.
[78] Araque E, Parra C, Freer J, Contreras D, Rodriguez J, Mendonca R, Baeza J. Evaluation of organosolv pretreatment for the conversion of Pinus radiata D. Don to ethanol. Enzyme and Microbial Technology, 2007, 43: 214-219.
[79] Zhang Z, O’Hara I M, Doherty W O S. Pretreatment of sugarcane bagasse by acidified aqueous polyol solutions. Cellulose, 2013, 20(6): 3179-3190.
[80] Papatheofanous M G, Billa E, Koullas D P, Monties B, Koukios E G. Two-stage acidcatalyzed fractionation of lignocellulosic biomass in aqueous ethanol systems at low temperatures. Bioresource Technology, 1995, 54: 305-310.
[81] Senila L, Senila M, Costiug S, Miclean M, Cerasel V, Roman C. The autohydrolysis of Albies alba wood using adaptive neural fuzzy interference system mathematical modeling. International Journal of Green Energy, 2014, 11(6): 611-624.
[82] 李建华, 张越, 刘仲齐. 化学处理方法对木质纤维素降解效率的影响评述. 生物技术进展, 2011, 1(6): 421-425.
Li J H, Zhang Y, Liu Z Q. Influence of chemical pretreatment technology on the digestibility of lignocellulose. Current Biotechnology, 2011, 1(6): 421-425. (in Chinese)
[83] Stewart Jr C N, Liu G S. Bioenergy plants in the United States and China. Plant Science, 2011, 181(6): 621-622. |
[1] | 耿文杰,李宾,任佰朝,赵斌,刘鹏,张吉旺. 种植密度和喷施乙烯利对夏玉米木质素代谢和抗倒伏性能的调控[J]. 中国农业科学, 2022, 55(2): 307-319. |
[2] | 刘恋,唐志鹏,李菲菲,熊江,吕壁纹,马小川,唐超兰,李泽航,周铁,盛玲,卢晓鹏. ‘融安金柑’‘滑皮金柑’及‘脆蜜金柑’贮藏期品质、贮藏特性及果皮转录组分析[J]. 中国农业科学, 2021, 54(20): 4421-4433. |
[3] | 高凤芹,景媛媛,德英,万其号,刘鹰昊,塔娜. 稀硫酸预处理对杂交狼尾草木质纤维素化学组分和表征结构的影响[J]. 中国农业科学, 2020, 53(21): 4516-4526. |
[4] | 董荷荷, 骆永丽, 李文倩, 王元元, 张秋霞, 陈金, 金敏, 李勇, 王振林. 不同春季追氮模式对小麦茎秆抗倒性能及木质素积累的影响[J]. 中国农业科学, 2020, 53(21): 4399-4414. |
[5] | 蒋旭,崔会婷,王珍,张铁军,龙瑞才,杨青川,康俊梅. 紫花苜蓿MsNST的克隆及对木质素与纤维素合成的功能分析[J]. 中国农业科学, 2020, 53(18): 3818-3832. |
[6] | 陈雪萍,刘世尧,尹能文,荆凌云,魏丽娟,林呐,肖阳,徐新福,李加纳,刘列钊. 甘蓝型油菜茎秆纤维组分含量和木质素单体G/S 近红外模型构建[J]. 中国农业科学, 2018, 51(4): 688-696. |
[7] | 佘恒志,聂姣,李英双,刘星贝,胡丹,马珊,次仁卓嘎,汪灿,吴东倩,阮仁武,易泽林. 不同抗倒伏能力甜荞品种茎秆木质素及其单体合成特征[J]. 中国农业科学, 2017, 50(7): 1202-1209. |
[8] | 尤毅娜,邓 红,孟永宏,房 杰,郭玉蓉,张 英. 碱性双氧水预处理对苹果渣化学组分和酶解得率的影响[J]. 中国农业科学, 2016, 49(8): 1559-1566. |
[9] | 刘贺娟,李悦鹏,刘 威,邵 琪,齐红岩. 接种枯萎病菌对甜瓜木质素合成相关酶活性及CmCADs表达的影响[J]. 中国农业科学, 2016, 49(11): 2153-2163. |
[10] | 胡丹,刘星贝,汪灿,杨浩,李鹤鑫,阮仁武,袁晓辉,易泽林. 不同抗倒性甜荞茎秆木质素合成关键酶基因的表达分析[J]. 中国农业科学, 2015, 48(9): 1864-1872. |
[11] | 郭光艳,柏峰,刘伟,秘彩莉. 转录因子对木质素生物合成调控的研究进展[J]. 中国农业科学, 2015, 48(7): 1277-1287. |
[12] | 李红亚, 李术娜, 王树香, 王全, 朱宝成. 产芽孢木质素降解菌MN-8的筛选及其对木质素的降解[J]. 中国农业科学, 2014, 47(2): 324-333. |
[13] | 王晓娟, 张树振, 林双双, 邓志刚, 金樑. 紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展[J]. 中国农业科学, 2013, 46(8): 1694-1705. |
[14] | 李军, 李正霄, 解宏图, 董智, 白震, 王贵满, 陈智文, 张旭东. 免耕条件下不同秸秆覆盖量对土壤木质素含量的影响[J]. 中国农业科学, 2013, 46(11): 2265-2270. |
[15] | 陈晓光, 石玉华, 王成雨, 尹燕枰, 宁堂原, 史春余, 李勇, 王振林. 氮肥和多效唑对小麦茎秆木质素合成的影响及其与抗倒伏性的关系[J]. 中国农业科学, 2011, 44(17): 3529-3536. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 166
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 356
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
|