[1]Wu G Y. Intestinal mucosal amino acid catabolism. Journal of Nutrition, 1998, 128(8): 1249-1252.
[2]Reeds P J, Burrin D G, Stoll B, Jahoor F, Wykes L, Henry J, Frazer M E. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. American Journal of Physiology- Endocrinology and Metabolism, 1997, 273(2): 408-415.
[3]Wu G Y, Jr Morris S M. Arginine metabolism: nitric oxide and beyond. Biochemical Journal, 1998, 336: 1-17.
[4]Chen H, Pan Y X, Wong E A, Jr Webb K E. Dietary protein level and stage of development affect expression of an intestinal peptide transporter (cPepT1) in chickens. Journal of Nutrition, 2005, 135(2): 193-198.
[5]Shen H, Smith D, Brosius F C. Developmental expression of PEPT1 and PEPT2 in rat small intestine, colon, and kidney. Pediatric Research, 2001, 49(6): 789-795.
[6]王修启, 邹仕庚, 左建军, 苏海林, 黄志毅, 冯定远. 肉鸡肠道 PepT1 mRNA 表达的肠段差异性与发育性变化. 畜牧兽医学报, 2007, 38(8): 814-821.
Wang X Q, Zou S G, Zuo J J, Su H L, Huang Z Y, Feng D Y. Regional and ontogenetic expression of PepT1 mRNA in intestine of broiler. Acta Veterinaria et Zootechnica Sinica, 2007, 38(8): 814-821. (in Chinese)
[7]Li H, Gilbert E R, Zhang Y, Crasta O, Emmerson D, Jr Webb K E, Wong E A. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Animal Genetics, 2008, 39(4): 407-424.
[8]Maragakis N J, Rothstein J D. Glutamate transporters: animal models to neurologic disease. Neurobiology of Disease, 2004, 15(3): 461-473.
[9]Kanai Y, Hediger M A. The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflügers Archiv: European Journal of Physiology, 2004, 447(5): 469-479.
[10]Kanai Y, Hediger M A. The glutamate and neutral amino acid transporter family: physiological and pharmacological implications. European Journal of Pharmacology, 2003, 479(1-3): 237-247.
[11]Zerangue N, Kavanaugh M P. Flux coupling in a neuronal glutamate transporter. Nature, 1996, 383(6601): 634-637.
[12]Welbourne T C, Matthews J C. Glutamate transport and renal function. The American Journal of Physiology, 1999, 277: 501-505.
[13]Gilbert E R, Li H F, Emmerson D A, Jr Webb K E, Wong E A. Dietary protein quality and feed restriction influence abundance of nutrient transporter mRNA in the small intestine of broiler chicks. Journal of Nutrition, 2008, 138(2): 262-271.
[14]Gilbert E R, Li H, Emmerson D A, Jr Webb K E, Wong E A. Dietary protein composition influences abundance of peptide and amino acid transporter messenger ribonucleic acid in the small intestine of 2 lines of broiler chicks. Poultry Science, 2010, 89(8): 1663-1676.
[15]Humphrey B D, Stephensen C B, Calvert C C, Klasing K C. Glucose and cationic amino acid transporter expression in growing chickens (Gallus gallus domesticus). Comparative Biochemistry and Physiology- Part A: Molecular and Integrative Physiology, 2004, 138(4): 515-525.
[16]周响艳, 左建军, 职爱民, 张常明, 黄志毅, 张 艳, 王修启, 冯定远. 猪肠道碱性氨基酸转运载体 (CAT1) mRNA 表达的组织特异性和发育性变化. 畜牧兽医学报, 2008, 39(2): 170-175.
Zhou X Y, Zuo J J, Zhi A M, Zhang C M, Huang Z Y, Zhang Y, Wang X Q, Feng D Y. Segmental distribution and ontogenetic regulation of cationic amino acid transporter mRNA expression in the intestine of pigs. Acta Veterinaria et Zootechnica Sinica, 2008, 39(2): 170-175. (in Chinese)
[17]邹仕庚, 谭会泽, 王修启, 左建军, 冯定远, 董泽敏, 叶 慧. 不同基因型肉鸡肠道 CAT1 和 CAT4 mRNA 表达的发育性变化. 华北农学报, 2008, 23(2): 55-61.
Zou S G, Tan H Z, Wang X Q, Zuo J J, Feng D Y, Dong Z M, Ye H. Ontogenetic expression of CAT1 and CAT4 mRNA in intestine of broiler. Acta Agriculturae Boreali-Sinica, 2008, 23(2): 55-61. (in Chinese)
[18]Mortola J P, Awam A K. Growth of the chicken embryo: implications of egg size. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 2010, 156(4): 373-379.
[19]Michel P, Ollason J C, Grosbois V, Thompson P M. The influence of body size, breeding experience and environmental variability on egg size in the northern fulmar (Fulmarus glacialis). Journal of Zoology, 2003, 261(4): 427-432.
[20]Suarez M E, Wilson H R, Mather F B, Wilcox C J, McPherson B N. Effect of strain and age of the broiler breeder female on incubation time and chick weight. Poultry Science, 1997, 76(7): 1029-1036.
[21]Mott C R, Siegel P B, Jr Webb K E, Wong E A. Gene expression of nutrient transporters in the small intestine of chickens from lines divergently selected for high or low juvenile body weight. Poultry Science, 2008, 87(11): 2215-2224.
[22]Feng Y, Wang X Q, Zhang C M, Zeng P L, Shu G, Luo Q B, Zhang D X. The comparative analysis on egg quality, nutrients and relative gene with gene expression profile of embryo by cDNA microarray from Lingshan local breed and White Plymouth Rock breed// Inaugural ASAS-CAAV Asia Pacific Rim Conference. 2009. Beijing: American Society of Animal Science-Chinese Association of Animal Science and Veterinary.
[23]Makky K, Tekiela J, Mayer A N. Target of rapamycin (TOR) signaling controls epithelial morphogenesis in the vertebrate intestine. Developmental Biology, 2007, 303(2): 501-513.
[24]Wu X F, Kihara T, Akaike A, Niidome T, Sugimoto H. PI3K/Akt/mTOR signaling regulates glutamate transporter 1 in astrocytes. Biochemical and Biophysical Research Communications, 2010, 393(3): 514-518.
[25]Aoyama K, Watabe M, Nakaki T. Regulation of neuronal glutathione synthesis. Journal of Pharmacological Sciences, 2008, 108: 227-238.
[26]Speake B, Murray A C. Noble R. Transport and transformations of yolk lipids during development of the avian embryo. Progress in Lipid Research, 1998, 37(1): 1-32.
[27]Jr Moran E T. Nutrition of the developing embryo and hatchling. Poultry Science, 2007, 86(5): 1043-1049.
[28]Uni Z, Tako E, Gal-Garber O, Sklan D. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poultry Science, 2003, 82(11): 1747-1754.
[29]杨 宁. 家禽生产学. 北京: 中国农业出版社, 2002.
Yang N. Poultry Science. Beijing: China Agriculture Press, 2002. (in Chinese) |